Ecological Interactions Between Metals and Microbes

PDF Version Also Available for Download.

Description

Analysis of Lead Resistant Arthrobacter sp. SI-1 Arthrobacter sp. SI-1 was isolated from contaminated soils at the Seymour site, and was found to be resistant to Pb at concentrations near its solubility limit (150 micromolar). The genetic region that confers lead resistance is located on a plasmid (PSI-1)has been cloned. We have continued to analyze the sub-clones from the pSI-1 region. Initially we had predicted that ORF1-ORF5 were involved in lead resistance because their organization suggest a potential operon. In addition these same five genes have been found in a similar organization on a plasmid from Arthrobacter FB24, while the ... continued below

Creation Information

Konopka, Allan E. June 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Analysis of Lead Resistant Arthrobacter sp. SI-1 Arthrobacter sp. SI-1 was isolated from contaminated soils at the Seymour site, and was found to be resistant to Pb at concentrations near its solubility limit (150 micromolar). The genetic region that confers lead resistance is located on a plasmid (PSI-1)has been cloned. We have continued to analyze the sub-clones from the pSI-1 region. Initially we had predicted that ORF1-ORF5 were involved in lead resistance because their organization suggest a potential operon. In addition these same five genes have been found in a similar organization on a plasmid from Arthrobacter FB24, while the pAA1 plasmid from A. aurescens TC1 contains three of the five genes. In order to determine the minimum genes required for lead resistance a series of deletion mutants were constructed from the 14.7 kb clone pKJ60. Deletion of ORFs 3-5 did not have any measurable effect on the ability of the cloned fragment to rescue the lead resistance phenotype in a lead sensitive strain of E. coli (RW3110). The construct pKJ65 was generated by removing approximately 200 bp from the center region of ORF2, which codes for the P-Type ATPase; as expected this deletion resulted in a lead sensitive phenotype. While the genes downstream of ORF 2 do not appear to play a significant role in lead resistance the same cannot be said for ORF1 which is upstream. Based on amino acid sequence homology a BLAST search indicates ORF1 is likely a regulatory protein from the ArsR family. When ORF1 is removed (pKJ64, pKJ67), a lead sensitive phenotype occurs. Approximately 100 bp from the sequence of ORF1 was deleted (pKJ70) in order to test if ORF1 is required for lead resistance, or if the cells require something in the upstream non-coding region (binding site, promoter). Cells with pKJ70 show some limited growth in the presence lead, but it is generally much slower than the lead resistant constructs where ORF1 is present. These results suggest that ORF1 has a positive effect on lead resistance, perhaps acting as an activator of transcription. We are currently working to repeat this same set of experiments using cadmium. Previous work on the physiology of lead resistance was done in a MES buffered minimal media at pH6.5, the concentration of PbNO3 in these experiments ranged from 0 to 200 micromolar.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NABIR-1011901-2005
  • Grant Number: None
  • DOI: 10.2172/893456 | External Link
  • Office of Scientific & Technical Information Report Number: 893456
  • Archival Resource Key: ark:/67531/metadc883530

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 4, 2016, 5:45 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Konopka, Allan E. Ecological Interactions Between Metals and Microbes, report, June 1, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc883530/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.