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Abstract. Scientists, motivated by the desire for systems-level understanding of 
phenomena, increasingly need to share their results across multiple disciplines.  
Accomplishing this requires data to be annotated, contextualized, and readily 
searchable and translated into other formats.  While these requirements can be 
addressed by custom programming or obviated by community standardization, 
neither approach has ‘solved’ the problem.  In this paper, we describe a 
complementary approach – a general capability for articulating the format of 
arbitrary textual and binary data using a logical data model, expressed in XML-
Schema, which can be used to provide annotation and context, extract metadata, 
and enable translation.  This work is based on the draft specification for the Data 
Format Description Language and our open source “Defuddle” parser. We 
present an overview of the specification, detail the design of Defuddle, and 
discuss the benefits and challenges of this general approach to enabling 
discovery, sharing, and interpretation of diverse data sets. 

1 Introduction 
 

Scientists generate a wide range of data files in the course of their research. These files 
are generated from instruments performing measurements on physical systems, 
computer simulations predicting aspects of a physical system, and manually 
assimilated knowledge (often in spreadsheet form.)  Individual file formats can vary 
greatly depending on the particular experimental requirements and often evolve rapidly 
over time.  Motivated by the desire for systems-level understanding of complex 
phenomena, this data increasingly needs to be shared across disciplines and 
transformed for different analysis contexts.  Beyond standard file formats, which have 
met with various levels of success [1-3], scientists employ strategies of custom 
programming and prescriptive parsers to support sharing and collaboration of their file 
data. Custom parsers can be effective and efficient but problems arise as the number of 
formats increases.  Prescriptive parsers such as NetCDF [4] and HDF [5], where the 
data must adhere to a pre-specified, but self-describing format and structure have been 
successful within certain communities, but not taken hold in others.  Where standards 
are successful, the standards tend to become legacy formats themselves over time as 
new methodologies or instruments are developed. Additionally, there is a push to retain 



raw digital data for preservation purposes [6].  In short, non-standardized and legacy 
file formats will continue to play a crucial role in scientific research necessitating 
technologies to enable sharing, discovery and transformation of these formats. 

The Extensible Markup Language (XML) allows us to represent the logical structure 
of data elements in a file, making it available to various tools, such as databases and 
query languages.  XML tagged data can be easily manipulated using a higher level 
language such as XML Stylesheet Language Translation (XSLT) and formatted for 
viewing on multiple devices, or translated into different formats. However, most 
scientific data is not currently in XML and there are often benefits to maintaining 
custom formats. For example, XML tagged data tends to be quite verbose and not all 
data types, arrays in particular, are handled well.  However, extending XML 
technology to handle arbitrary un-tagged, binary and textual files would make the 
extensive XML tools applicable to scientific data and provide analogous benefits. 

  Descriptive parsers can be used to link raw physical formats into a logical model 
expressed as XML. With this approach, the existing data structure, the format of the 
data types and the mechanisms to translate it are defined in a descriptor file.  A generic 
parser engine ingests the descriptor and the data, applies the transformation, and 
produces the desired result.  Such a generic engine can be applied to metadata 
extraction as well as data transformation to greatly reduce the effort required to 
discover and interpret legacy data, automate transfer of data from one program to 
another (e.g. acquisition to analysis to visualization), and support the reuse and fusion 
of data across multiple domains allowing scientific communities to discover, manage, 
and share diverse data sets while maintaining it in its original format. 

 
2 Background 
 
Recently, descriptive parser approaches have received increasing attention.  One effort, 
the Binary Format Description (BFD) language, was based on the Extensible Scientific 
Interchange Language (XSIL) [7], a language designed for processing scientific data, 
including multiple streams and arrays.   The BFD parser, in conjunction with XSLT, 
was used by scientific computing environments for the extraction of metadata and data 
translation. While successful in some cases, there were many cases where BFD 
capabilities were not rich enough.  For example, BFD was unable to map to an 
arbitrary XML schema, requiring an additional XSLT translation.  The research from 
the BFD effort contributed to the production of the parser described in this paper. 

The BinX descriptive parser supports the description of the content, structure and 
physical layout (endian-ness, blocksize…) of binary files.   BinX was designed to 
enable transparent transfer of data between diverse platforms.  However, BinX was 
designed to support only binary files and, as with BFD, supports limited semantics [8]. 
An independent, but similar effort is the Earth Science Markup Language (ESML) 
which is built with the intent that users can write external files to describe the structure 
of any earth science dataset.  Applications can utilize the ESML library to parse this 
description file and transparently decode the data format [9].  However, the library 
contains several limitations; not all features, such as handling multiple wildcards, ‘if’ 
statements, or specific indexes of collections, are implemented, and, similar to BFD, a 
predefined XML model limits extensibility [10].  Another effort, designed primarily for 
understanding space data, the Enhanced Ada SubseT (EAST), allows users to describe 



a given data format and use tools to access data in that format [11].  Finally, the 
Universal Parsing Agent (UPA) was developed to ingest, transform, and add 
descriptive content markup to text data. UPA provides an accessible user interface and 
batch processing capabilities for handling large datasets [12]. All of these efforts have 
achieved success in their targeted communities but have limitations with respect to the 
type of data supported, extensibility, or expressiveness. 

A recent development in descriptive parsers is the Data Format Description 
Language (DFDL) [13] specification from the Global Grid Forum.  DFDL proposes to 
describe existing data formats, both binary and text, in a manner that makes the data 
accessible through generic mechanisms.  DFDL is motivated by the realization that 
BFD, BinX, commercial tools, and domain specific efforts such as ESML, all shared a 
common goal and can use a common syntax while combining concepts of these 
languages.  The specification is based on the XML Schema, which is used to define the 
structure and semantics of XML documents and to annotate schemas for the benefit of 
human readers and applications.  In DFDL, XML’s extensible annotation mechanism is 
used to describe the data and transformations needed to populate that logical model 
from the input stream.  The input is a sequence of bytes and the output is an XML 
Information Model, i.e., a set of items from the XML Information Set [14].  The 
transformations may require several stages (e.g., from bytes to string, then from string 
to integer).  The DFDL specification is still under development, but is expressive 
enough to handle many non-trivial parsing requirements.   

 

 
Fig. 1.   Example of a DFDL schema with input data and results 

For example, consider the UTF-encoded data, associated logical XML model, and 
sample DFDL schema shown in Figure 1. The DFDL schema is composed of an XML 
Schema describing the XML model and DFDL specific annotations describing the 
format of the underlying data.  As shown, a ‘sequence’ of element definitions describes 
the logical XML model that will appear in the result.  The ‘appinfo’ annotations, 
known as properties, describe the format of the underlying data stream.  The data type 



is defined as text by the ‘repType’ property.  The ‘charset’ property defines how the 
incoming data stream is to be mapped to text.  Finally, the ‘separator’ property 
describes how variable length text should be read.  It can be defined as a regular 
expression or simple text string.  This example shows a very limited subset of the 
available annotations and properties in order to provide a perspective on the DFDL 
approach.  Table 1 lists important capabilities of DFDL.  A more detailed description 
of DFDL capabilities is beyond the scope of this paper.   

Table 1.   Key DFDL Capabilities 

Support for multiple streams Conditional logic (if, choice, any) 

Basic math operations (+,-,*,/) Looping 

Pattern matching for text/binary delimiters External transforms 

Reference values within schema (for sequence length, delimiters, etc. ) 

Layering (hidden elements that can be referenced, but do not display in output) 

Extensibility of basic capabilities of the DFDL parser to allow custom types and conversions 

 
In order to help define the components necessary in the language, several DFDL 

parsers are currently in development.  One such implementation is the open-source 
Defuddle parser [15].    Defuddle supports translation and metadata extraction of 
arbitrary text and binary data through the use of DFDL schema descriptor files.  It also 
optionally supports the application of style sheets to the output.  The Defuddle parser is 
both a proof of concept of the DFDL specification and a mechanism for testing 
concepts which can feed back into the specification process.  A specific aim of 
Defuddle is to demonstrate that an efficient, generic parser can be built and that such a 
parser can effectively address real-world examples.    

 
3 Parser Design 
 
Our design leverages existing tools for automatically parsing XML documents within 
the context of a logical model.  Providing a layer of automation that makes it easy to 
manipulate XML encoded data in terms of a higher level logical model rather than 
dealing with the low level node structure directly [16].  As a result, we chose to extend 
a Java/XML binding compiler based on the Java Architecture for XML Binding 
(JAXB) specification.  JAXB provides a convenient way to use XML Schema to 
automatically parse XML instance documents into Java classes corresponding to that 
schema  From a design standpoint, this solution provides an off-the-shelf ingestion 
engine for the logical model (XML Schema), a dynamic logical model compiler (Java 
classes), and an XML document generator for streaming data from the classes to XML. 

Figure 2 illustrates the conceptual design of the Defuddle parser.  At run-time, the 
schema is ingested and processed to generate Java classes representing components of 
the logical model.  These classes are then compiled using the standard Java compiler.  
The translation of the input data source(s) is then initiated using the JAXB XML 
marshaller. As the java objects are streamed by the parser, the logical model is formed 



by loading the required values from the data file. The XML model is streamed to an 
output that can then be processed by standard XML tools. The class generation process 
is performed automatically before translations are performed, but the compiled classes 
can be cached to improve performance on subsequent runs. 

 

 
Fig. 2. Conceptual design of the Defuddle Parser  

 
Defuddle is based on the Apache JaxMe project [17], an implementation of the 

JAXB specification.  Defuddle extends the JaxMe class generator to provide the 
functionality needed to load data into the model and complete the transformation. 
Leveraging JaxMe greatly simplified the development of Defuddle. Figure 3 illustrates 
the types of classes generated by JaxMe and the Defuddle extensions that implement 
various features.   Each complex type is represented by three classes: the type 
implementation, type driver, and type handler.  Within the type implementation, values 
such as elements and attributes are accessed from the data stream using get<Name> 
methods. Vanilla JaxMe generated type implementations store and return the values, 
Defuddle adds content to these ‘get’ methods, which uses the annotation handlers and 
data provider along with other built-in Defuddle classes, such as the type readers, 
condition evaluators, and external transforms, to parse the required data.  

 Fig. 3. Defuddle Extensions to JaxMe 
While the complexType implementation classes provide information to parse 

individual values, the parser needs additional information to understand the structure of 
the data.  This includes the order of the elements, the location of sequences, and the 
type of data to be marshaled.  This functionality is found in the complexType drivers.  
The basic ordering and ‘get’ calls are generated by JaxMe.  Defuddle extensions check 

http://java.sun.com/webservices/jaxb/


for layers, hidden elements, and control sequences of unknown lengths.  They also 
choose the correct element in conditional statements, and pass in the data provider and 
annotation values.  The third kind of generated class is the complexType Handler; these 
classes are generated almost entirely by the JaxMe generator and chiefly control the 
marshalling of the classes to XML, ensuring the correct state when starting/closing 
elements and writing data. 

Along with the JaxMe extensions, Defuddle contains additional classes to aid in 
parsing as shown in the right side of Figure 3.  Various readers are used for converting 
values from one type to another, for example from byte to string, from string to 
multiple strings, and from string to int.  Each of these readers use the annotation 
properties specified in the schema.  Defuddle also uses a data provider to retrieve from 
the data stream, referencing other values in the schema, or for handling multiple input 
sources.  When evaluating conditions, the annotations are passed on to a condition 
evaluator to determine the correct element to read.  Defuddle also supports the calling 
of external transformations and integrating the results into the Defuddle transformation. 

 
4 Discussion 
 
Defuddle currently supports all of the features listed in Table 1.  To validate the 
accuracy of the parser, a collection of example schemas and files have been composed.  
These cover a broad range of capabilities such as reading basic binary/ascii numbers, 
basic math operations, the ability to reference other elements within the schema, and 
the ability to read from multiple files or input streams.  In practice, it is necessary to 
use a combination of these features.  We have demonstrated the parser capabilities on 
several types of actual formats from the biological and chemical sciences including: 
CHEMKIN binary solution files, NWChem Molecular Dynamics property files and 
unstructured output files, and MicroArray and Protein-Protein Interaction Spreadsheets. 

One goal of Defuddle is to demonstrate that an efficient, generic parser can be 
built to address real-world examples.  Performance is of particular interest; can a 
generic descriptive parser perform as efficiently as a custom parser?  A generic, pre-
compiled, parser can be optimized based on the types of data and access pattern to 
make use of lazy parsing, avoiding unnecessary reading and caching of data.  Pre-
compiled schemas can also be cached to eliminate the code generation /compilation 
cycle.  We are researching ways to better enable rapid, random access to partial data 
sets from tightly structured data, and to support the parsing of large data sets (through 
memory mapping and  streaming). Additionally, with a code-generating approach, the 
binder can make choices when creating the schema classes to handle much of the actual 
parsing, such as choosing the type and length of data to be read, pre-computing the size 
of each data element, and requesting individual elements in tightly structured data can 
be served by seeking to the exact point in the data stream rather than parsing all 
intermediate values.  For example, for a list of 100 binary floating point numbers, the 
location of the xth value can be computed based on the actual size of the numbers and 
the index of the desired number.  Unfortunately this enhancement is not possible when 
reading varying length text, in which one must look for a separator between each 
element, and the size of the elements can vary based on the data being processed.  Even 
with variable length data, intelligent parsing can still be achieved by estimating the 
length of the next element to read before evaluating for a delimiter, based on the size of 



previous elements in the sequence.  If the delimiter is found before the end of the text 
read, the parser is able to backtrack to the position in the stream immediately after the 
delimiter, ensuring that no data is accidentally skipped.  This estimation is often very 
close and speeds up parsing considerably.  

When retrieving data, a more complex transformation than mere extraction may be 
required; this can be handled through the idea of layering.   With layering, the user can 
describe intermediate forms of the data which are not represented in the final result. 
These layers are represented in the DFDL language through the use of XML Schema 
annotations which specify how and where each layer should be read in a stream; they 
also specify a name which can later be used to reference data within the layer.  A layer 
can be accessed using annotations similar to the method used to reference other 
elements within the schema.   

Put into practice, this type of generic parsing capability can provide a cornerstone to 
data sharing and collaboration environments by providing metadata extraction, 
translations, data slicing, and data fusion capabilities.    For example, the Scientific 
Annotation Middleware (SAM) project provides configurable, automated metadata 
extraction of uploaded resources [18]. Combinations of XSLT stylesheets, Defuddle 
schemas, and web services are registered with SAM and run dynamically to extract 
metadata.  For example, when a binary data file is uploaded to SAM, registered DFDL 
and XSLT files are accessed to generate relevant properties and store them as metadata, 
allowing users to automatically capture annotations.  A similar mechanism can be used 
to provide data views - for example dynamically generated HTML pages or pages 
invoking Java applets for a browser-based view of the data [19].  Combined with a user 
environment such as the Collaboratory for Multi-scale Chemical Sciences (CMCS) 
[20], users can contribute data that is readily available for other users to browse, 
search, and access in a format suitable for their use. The availability of Defuddle is 
expected to reduce the number of custom translators, serve as a library of translations 
within applications, and provide the querying of subsets from large files.  If the data 
description and subset queries were associated with persistent identifiers such as Life 
Science Identifiers (LSIDs), it should be possible to create virtual persistent identifiers 
for substructures and to resolve and retrieve substructures on demand [21].   
 
5 Conclusion 

 
In the paper, we presented a general “descriptive parser” approach to mapping physical 
formats to logical XML representations.  This approach, based on the Data Format 
Description Language specification, uses data descriptions based on XML Schema 
extensions.  Once in XML, off-the-shelf XML solutions can be applied to readily 
transform data, extract data and metadata, or to query the data.  We detailed the design 
and implementation of an open-source parser engine known as Defuddle.  Using real-
world file formats from the chemical and biological sciences, we demonstrated that the 
current capabilities defined in DFDL and implemented in Defuddle are already capable 
of parsing a diverse set of formats.  While the DFDL specification is still a work in 
progress, Defuddle has proved to be a useful tool in guiding specification activities and 
is being used to explore how extensibility can be integrated with the basic feature set.   

In the future, our research will focus on extensions for internal and external 
transforms, layering transformations, and optimally generating data subsets from XSL 



translation and XPath queries.  The latter feature will require smart parsing and the 
predetermination of the position of elements within data streams.  Such features, 
together with the already existing capabilities, enable a range of light-weight, loosely-
coupled data integration and data virtualization systems needed to support multi-
disciplinary research on complex phenomena. 
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