
Mapping Physical Formats to Logical Models to
Extract Data and Metadata: The Defuddle Parsing

Engine

Tara D. Talbott1, Karen L. Schuchardt1, Eric G. Stephan1, James D. Myers2

1Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352, USA
{Tara.Talbott, Karen.Schuchardt, Eric.Stephan}@pnl.gov

2National Center for Supercomputing Applications, 1205 W. Clark St. MC-257
Urbana, IL 61801

jimmyers@ncsa.uiuc.edu

Abstract. Scientists, motivated by the desire for systems-level understanding of
phenomena, increasingly need to share their results across multiple disciplines.
Accomplishing this requires data to be annotated, contextualized, and readily
searchable and translated into other formats. While these requirements can be
addressed by custom programming or obviated by community standardization,
neither approach has ‘solved’ the problem. In this paper, we describe a
complementary approach – a general capability for articulating the format of
arbitrary textual and binary data using a logical data model, expressed in XML-
Schema, which can be used to provide annotation and context, extract metadata,
and enable translation. This work is based on the draft specification for the Data
Format Description Language and our open source “Defuddle” parser. We
present an overview of the specification, detail the design of Defuddle, and
discuss the benefits and challenges of this general approach to enabling
discovery, sharing, and interpretation of diverse data sets.

1 Introduction

Scientists generate a wide range of data files in the course of their research. These files
are generated from instruments performing measurements on physical systems,
computer simulations predicting aspects of a physical system, and manually
assimilated knowledge (often in spreadsheet form.) Individual file formats can vary
greatly depending on the particular experimental requirements and often evolve rapidly
over time. Motivated by the desire for systems-level understanding of complex
phenomena, this data increasingly needs to be shared across disciplines and
transformed for different analysis contexts. Beyond standard file formats, which have
met with various levels of success [1-3], scientists employ strategies of custom
programming and prescriptive parsers to support sharing and collaboration of their file
data. Custom parsers can be effective and efficient but problems arise as the number of
formats increases. Prescriptive parsers such as NetCDF [4] and HDF [5], where the
data must adhere to a pre-specified, but self-describing format and structure have been
successful within certain communities, but not taken hold in others. Where standards
are successful, the standards tend to become legacy formats themselves over time as
new methodologies or instruments are developed. Additionally, there is a push to retain

raw digital data for preservation purposes [6]. In short, non-standardized and legacy
file formats will continue to play a crucial role in scientific research necessitating
technologies to enable sharing, discovery and transformation of these formats.

The Extensible Markup Language (XML) allows us to represent the logical structure
of data elements in a file, making it available to various tools, such as databases and
query languages. XML tagged data can be easily manipulated using a higher level
language such as XML Stylesheet Language Translation (XSLT) and formatted for
viewing on multiple devices, or translated into different formats. However, most
scientific data is not currently in XML and there are often benefits to maintaining
custom formats. For example, XML tagged data tends to be quite verbose and not all
data types, arrays in particular, are handled well. However, extending XML
technology to handle arbitrary un-tagged, binary and textual files would make the
extensive XML tools applicable to scientific data and provide analogous benefits.

 Descriptive parsers can be used to link raw physical formats into a logical model
expressed as XML. With this approach, the existing data structure, the format of the
data types and the mechanisms to translate it are defined in a descriptor file. A generic
parser engine ingests the descriptor and the data, applies the transformation, and
produces the desired result. Such a generic engine can be applied to metadata
extraction as well as data transformation to greatly reduce the effort required to
discover and interpret legacy data, automate transfer of data from one program to
another (e.g. acquisition to analysis to visualization), and support the reuse and fusion
of data across multiple domains allowing scientific communities to discover, manage,
and share diverse data sets while maintaining it in its original format.

2 Background

Recently, descriptive parser approaches have received increasing attention. One effort,
the Binary Format Description (BFD) language, was based on the Extensible Scientific
Interchange Language (XSIL) [7], a language designed for processing scientific data,
including multiple streams and arrays. The BFD parser, in conjunction with XSLT,
was used by scientific computing environments for the extraction of metadata and data
translation. While successful in some cases, there were many cases where BFD
capabilities were not rich enough. For example, BFD was unable to map to an
arbitrary XML schema, requiring an additional XSLT translation. The research from
the BFD effort contributed to the production of the parser described in this paper.

The BinX descriptive parser supports the description of the content, structure and
physical layout (endian-ness, blocksize…) of binary files. BinX was designed to
enable transparent transfer of data between diverse platforms. However, BinX was
designed to support only binary files and, as with BFD, supports limited semantics [8].
An independent, but similar effort is the Earth Science Markup Language (ESML)
which is built with the intent that users can write external files to describe the structure
of any earth science dataset. Applications can utilize the ESML library to parse this
description file and transparently decode the data format [9]. However, the library
contains several limitations; not all features, such as handling multiple wildcards, ‘if’
statements, or specific indexes of collections, are implemented, and, similar to BFD, a
predefined XML model limits extensibility [10]. Another effort, designed primarily for
understanding space data, the Enhanced Ada SubseT (EAST), allows users to describe

a given data format and use tools to access data in that format [11]. Finally, the
Universal Parsing Agent (UPA) was developed to ingest, transform, and add
descriptive content markup to text data. UPA provides an accessible user interface and
batch processing capabilities for handling large datasets [12]. All of these efforts have
achieved success in their targeted communities but have limitations with respect to the
type of data supported, extensibility, or expressiveness.

A recent development in descriptive parsers is the Data Format Description
Language (DFDL) [13] specification from the Global Grid Forum. DFDL proposes to
describe existing data formats, both binary and text, in a manner that makes the data
accessible through generic mechanisms. DFDL is motivated by the realization that
BFD, BinX, commercial tools, and domain specific efforts such as ESML, all shared a
common goal and can use a common syntax while combining concepts of these
languages. The specification is based on the XML Schema, which is used to define the
structure and semantics of XML documents and to annotate schemas for the benefit of
human readers and applications. In DFDL, XML’s extensible annotation mechanism is
used to describe the data and transformations needed to populate that logical model
from the input stream. The input is a sequence of bytes and the output is an XML
Information Model, i.e., a set of items from the XML Information Set [14]. The
transformations may require several stages (e.g., from bytes to string, then from string
to integer). The DFDL specification is still under development, but is expressive
enough to handle many non-trivial parsing requirements.

Fig. 1. Example of a DFDL schema with input data and results

For example, consider the UTF-encoded data, associated logical XML model, and
sample DFDL schema shown in Figure 1. The DFDL schema is composed of an XML
Schema describing the XML model and DFDL specific annotations describing the
format of the underlying data. As shown, a ‘sequence’ of element definitions describes
the logical XML model that will appear in the result. The ‘appinfo’ annotations,
known as properties, describe the format of the underlying data stream. The data type

is defined as text by the ‘repType’ property. The ‘charset’ property defines how the
incoming data stream is to be mapped to text. Finally, the ‘separator’ property
describes how variable length text should be read. It can be defined as a regular
expression or simple text string. This example shows a very limited subset of the
available annotations and properties in order to provide a perspective on the DFDL
approach. Table 1 lists important capabilities of DFDL. A more detailed description
of DFDL capabilities is beyond the scope of this paper.

Table 1. Key DFDL Capabilities

Support for multiple streams Conditional logic (if, choice, any)

Basic math operations (+,-,*,/) Looping

Pattern matching for text/binary delimiters External transforms

Reference values within schema (for sequence length, delimiters, etc.)

Layering (hidden elements that can be referenced, but do not display in output)

Extensibility of basic capabilities of the DFDL parser to allow custom types and conversions

In order to help define the components necessary in the language, several DFDL

parsers are currently in development. One such implementation is the open-source
Defuddle parser [15]. Defuddle supports translation and metadata extraction of
arbitrary text and binary data through the use of DFDL schema descriptor files. It also
optionally supports the application of style sheets to the output. The Defuddle parser is
both a proof of concept of the DFDL specification and a mechanism for testing
concepts which can feed back into the specification process. A specific aim of
Defuddle is to demonstrate that an efficient, generic parser can be built and that such a
parser can effectively address real-world examples.

3 Parser Design

Our design leverages existing tools for automatically parsing XML documents within
the context of a logical model. Providing a layer of automation that makes it easy to
manipulate XML encoded data in terms of a higher level logical model rather than
dealing with the low level node structure directly [16]. As a result, we chose to extend
a Java/XML binding compiler based on the Java Architecture for XML Binding
(JAXB) specification. JAXB provides a convenient way to use XML Schema to
automatically parse XML instance documents into Java classes corresponding to that
schema From a design standpoint, this solution provides an off-the-shelf ingestion
engine for the logical model (XML Schema), a dynamic logical model compiler (Java
classes), and an XML document generator for streaming data from the classes to XML.

Figure 2 illustrates the conceptual design of the Defuddle parser. At run-time, the
schema is ingested and processed to generate Java classes representing components of
the logical model. These classes are then compiled using the standard Java compiler.
The translation of the input data source(s) is then initiated using the JAXB XML
marshaller. As the java objects are streamed by the parser, the logical model is formed

by loading the required values from the data file. The XML model is streamed to an
output that can then be processed by standard XML tools. The class generation process
is performed automatically before translations are performed, but the compiled classes
can be cached to improve performance on subsequent runs.

Fig. 2. Conceptual design of the Defuddle Parser

Defuddle is based on the Apache JaxMe project [17], an implementation of the

JAXB specification. Defuddle extends the JaxMe class generator to provide the
functionality needed to load data into the model and complete the transformation.
Leveraging JaxMe greatly simplified the development of Defuddle. Figure 3 illustrates
the types of classes generated by JaxMe and the Defuddle extensions that implement
various features. Each complex type is represented by three classes: the type
implementation, type driver, and type handler. Within the type implementation, values
such as elements and attributes are accessed from the data stream using get<Name>
methods. Vanilla JaxMe generated type implementations store and return the values,
Defuddle adds content to these ‘get’ methods, which uses the annotation handlers and
data provider along with other built-in Defuddle classes, such as the type readers,
condition evaluators, and external transforms, to parse the required data.

 Fig. 3. Defuddle Extensions to JaxMe
While the complexType implementation classes provide information to parse

individual values, the parser needs additional information to understand the structure of
the data. This includes the order of the elements, the location of sequences, and the
type of data to be marshaled. This functionality is found in the complexType drivers.
The basic ordering and ‘get’ calls are generated by JaxMe. Defuddle extensions check

http://java.sun.com/webservices/jaxb/

for layers, hidden elements, and control sequences of unknown lengths. They also
choose the correct element in conditional statements, and pass in the data provider and
annotation values. The third kind of generated class is the complexType Handler; these
classes are generated almost entirely by the JaxMe generator and chiefly control the
marshalling of the classes to XML, ensuring the correct state when starting/closing
elements and writing data.

Along with the JaxMe extensions, Defuddle contains additional classes to aid in
parsing as shown in the right side of Figure 3. Various readers are used for converting
values from one type to another, for example from byte to string, from string to
multiple strings, and from string to int. Each of these readers use the annotation
properties specified in the schema. Defuddle also uses a data provider to retrieve from
the data stream, referencing other values in the schema, or for handling multiple input
sources. When evaluating conditions, the annotations are passed on to a condition
evaluator to determine the correct element to read. Defuddle also supports the calling
of external transformations and integrating the results into the Defuddle transformation.

4 Discussion

Defuddle currently supports all of the features listed in Table 1. To validate the
accuracy of the parser, a collection of example schemas and files have been composed.
These cover a broad range of capabilities such as reading basic binary/ascii numbers,
basic math operations, the ability to reference other elements within the schema, and
the ability to read from multiple files or input streams. In practice, it is necessary to
use a combination of these features. We have demonstrated the parser capabilities on
several types of actual formats from the biological and chemical sciences including:
CHEMKIN binary solution files, NWChem Molecular Dynamics property files and
unstructured output files, and MicroArray and Protein-Protein Interaction Spreadsheets.

One goal of Defuddle is to demonstrate that an efficient, generic parser can be
built to address real-world examples. Performance is of particular interest; can a
generic descriptive parser perform as efficiently as a custom parser? A generic, pre-
compiled, parser can be optimized based on the types of data and access pattern to
make use of lazy parsing, avoiding unnecessary reading and caching of data. Pre-
compiled schemas can also be cached to eliminate the code generation /compilation
cycle. We are researching ways to better enable rapid, random access to partial data
sets from tightly structured data, and to support the parsing of large data sets (through
memory mapping and streaming). Additionally, with a code-generating approach, the
binder can make choices when creating the schema classes to handle much of the actual
parsing, such as choosing the type and length of data to be read, pre-computing the size
of each data element, and requesting individual elements in tightly structured data can
be served by seeking to the exact point in the data stream rather than parsing all
intermediate values. For example, for a list of 100 binary floating point numbers, the
location of the xth value can be computed based on the actual size of the numbers and
the index of the desired number. Unfortunately this enhancement is not possible when
reading varying length text, in which one must look for a separator between each
element, and the size of the elements can vary based on the data being processed. Even
with variable length data, intelligent parsing can still be achieved by estimating the
length of the next element to read before evaluating for a delimiter, based on the size of

previous elements in the sequence. If the delimiter is found before the end of the text
read, the parser is able to backtrack to the position in the stream immediately after the
delimiter, ensuring that no data is accidentally skipped. This estimation is often very
close and speeds up parsing considerably.

When retrieving data, a more complex transformation than mere extraction may be
required; this can be handled through the idea of layering. With layering, the user can
describe intermediate forms of the data which are not represented in the final result.
These layers are represented in the DFDL language through the use of XML Schema
annotations which specify how and where each layer should be read in a stream; they
also specify a name which can later be used to reference data within the layer. A layer
can be accessed using annotations similar to the method used to reference other
elements within the schema.

Put into practice, this type of generic parsing capability can provide a cornerstone to
data sharing and collaboration environments by providing metadata extraction,
translations, data slicing, and data fusion capabilities. For example, the Scientific
Annotation Middleware (SAM) project provides configurable, automated metadata
extraction of uploaded resources [18]. Combinations of XSLT stylesheets, Defuddle
schemas, and web services are registered with SAM and run dynamically to extract
metadata. For example, when a binary data file is uploaded to SAM, registered DFDL
and XSLT files are accessed to generate relevant properties and store them as metadata,
allowing users to automatically capture annotations. A similar mechanism can be used
to provide data views - for example dynamically generated HTML pages or pages
invoking Java applets for a browser-based view of the data [19]. Combined with a user
environment such as the Collaboratory for Multi-scale Chemical Sciences (CMCS)
[20], users can contribute data that is readily available for other users to browse,
search, and access in a format suitable for their use. The availability of Defuddle is
expected to reduce the number of custom translators, serve as a library of translations
within applications, and provide the querying of subsets from large files. If the data
description and subset queries were associated with persistent identifiers such as Life
Science Identifiers (LSIDs), it should be possible to create virtual persistent identifiers
for substructures and to resolve and retrieve substructures on demand [21].

5 Conclusion

In the paper, we presented a general “descriptive parser” approach to mapping physical
formats to logical XML representations. This approach, based on the Data Format
Description Language specification, uses data descriptions based on XML Schema
extensions. Once in XML, off-the-shelf XML solutions can be applied to readily
transform data, extract data and metadata, or to query the data. We detailed the design
and implementation of an open-source parser engine known as Defuddle. Using real-
world file formats from the chemical and biological sciences, we demonstrated that the
current capabilities defined in DFDL and implemented in Defuddle are already capable
of parsing a diverse set of formats. While the DFDL specification is still a work in
progress, Defuddle has proved to be a useful tool in guiding specification activities and
is being used to explore how extensibility can be integrated with the basic feature set.

In the future, our research will focus on extensions for internal and external
transforms, layering transformations, and optimally generating data subsets from XSL

translation and XPath queries. The latter feature will require smart parsing and the
predetermination of the position of elements within data streams. Such features,
together with the already existing capabilities, enable a range of light-weight, loosely-
coupled data integration and data virtualization systems needed to support multi-
disciplinary research on complex phenomena.

6 Acknowledgment

The research described in this paper was conducted under the Laboratory Directed
Research and Development Program at the Pacific Northwest National Laboratory, a
multiprogram national laboratory operated by Battelle for the U.S. Department of
Energy under Contract DE-AC05-76RL0 1830. The authors acknowledge Robert
McGrath and his work on a DFDL primer as well as helpful discussions and ongoing
collaborations with members of the DFDL working group.

References

1 Critchlow, T., and Lacroix, Z., eds., Bioinformatics:Managing Scientific Data. July 2003.
 Morgan Kaufmann.
2 Lancashire. R, Davies, T, Spectroscopic Data: The Quest for a Universal Format, Chemistry
 International, Vol. 28 No. 1, January-February 2006
3 Robins, K.D., “Formatting Standards”, http://www.ofcm.gov/sai/proceedings/pdf/02_panel2-
 3.pdf
4 netCDF Unidata: “netCDF”: http://my.unidata.ucar.edu/content/software/netcdf/index.htm
5 HDF: http://hdf.ncsa.uiuc.edu/
6 Davies, T., “Cometh a Digital Dark Age?”, Chemistry International Vol 24, No. 6, November
 2002
7 Extensible Scientific Interchange Language: http://www.cacr.caltech.edu/SDA/xsil/
8 Binary XML Description Language: http://www.edikt.org/binx
9 Environmental Science Markup Language: http://esml.itsc.uah.edu/index.jsp
10 Environmental Science Markup Language: http://esml.itsc.uah.edu/limitations.html
11 Enhanced Ada Subset (EAST): http://east.cnes.fr/english/index.html
12 Whiting MA, WE Cowley, NO Cramer, AG Gibson, RE Hohimer, RT Scott, and SC Tratz.
 2005. "Enabling Massive Scale Document Transformation for the Semantic Web: the
 Universal Parsing Agent." Proceedings of the 2005 ACM symposium on Document
 Engineering. pp 23-25. ACM Press, New York, NY
13 Data Format Description Language: http://forge.gridforum.org/projects/dfdl-wg
14 John Cowan and Richard Tobin (eds), “XML Information Set” W3C Working Draft 16
 March 2001, http://www.w3.org/TR/xml-infoset .
15 Defuddle Sourceforge Project: http://sourceforge.net/projects/defuddle
16 Java Architecture for XML Binding : http://java.sun.com/webservices/jaxb
17 Apache JaxMe: http://ws.apache.org/jaxme/
18 Scientific Annotation Middleware: http://collaboratory.emsl.pnl.gov/sam/
19 Talbott TD, MR Peterson, J Schwidder, and JD Myers. 2005. "Adapting the Electronic

Laboratory Notebook for the Semantic Era." 2005 International Symposium on Collaborative
Technologies and Systems, pp. 136-143. IEEE Computer Soc., Los Alamitos, CA.

20 Collaboratory for Multi-Scale Chemical Science: http://cmcs.org
21 Myers, J. “Fine-grained References into Binary Data and Data Virtualization Services”,

Presented at W3C Workshop on Semantic
 Web for Life Sciences 27-28 October 2004, Cambridge, Massachusetts USA

http://esml.itsc.uah.edu/index.jsp
http://esml.itsc.uah.edu/limitations.html
http://east.cnes.fr/english/index.html
http://forge.gridforum.org/projects/dfdl-wg
http://www.w3.org/TR/xml-
http://java.sun.com/webservices/jaxb/index.jsp
http://cmcs.org/
http://lists.w3.org/Archives/Public/public-swls-ws/2004Sep/att-0047/DataVirtualization.Myers.doc

