Recent Developments in Japan's HDR Program

PDF Version Also Available for Download.

Description

Japan is one of the most active volcanic countries in the world, and it is understood to have very abundant geothermal energy. In Japan, where only a limited amount of other natural energy resources are domestically available, geothermal energy is one of the nation's purely indigenous energy sources. Its development therefore, has, been anxiously urged. Geothermal energy is classified generally in several types: vapor dominated type resources, which are mainly used to generate electric power, and low grade hydrothermal fluid and hot dry rock type resources, most of which are not used at present in Japan. NEDO, the New Energy ... continued below

Physical Description

17-21

Creation Information

Yamaguchi, Tsutomu March 24, 1992.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Japan is one of the most active volcanic countries in the world, and it is understood to have very abundant geothermal energy. In Japan, where only a limited amount of other natural energy resources are domestically available, geothermal energy is one of the nation's purely indigenous energy sources. Its development therefore, has, been anxiously urged. Geothermal energy is classified generally in several types: vapor dominated type resources, which are mainly used to generate electric power, and low grade hydrothermal fluid and hot dry rock type resources, most of which are not used at present in Japan. NEDO, the New Energy and Industrial Technology Development Organization, promotes the technological development of geothermal energy utilization in order to increase the use of this type of energy, particularly in such technical fields as the development of a power plant that uses hydrothermal fluids. This type of plant will enable the effective use for power generation of not only steam, but also geothermal fluid, so as to permit the use of hot water that flows out in great quantities together with useful geothermal steam. The vast volume of geothermal water with medium to high temperature left intact underground will also be possible to utilize. Research themes promoted by NEDO, the Geothermal Energy Technology Department and the budget for FY 1991 (from April 1991 to March 1992) are: (1) Development of 10MW Class Binary Cycle Power Plant ($2.0M); (2) Development of Down-hole Pump ($3.0M); (3) Development of Technology for increasing Geothermal Energy Recovery ($5.9M); (4) Development of Measurement While Drilling System ($0.4M); and (5) Development of Hot Dry Rock Power Generation Technology ($7.1M). The total amount of 18.4 Million dollars is allocated for FY 1991 ($1 = 130 yen). Figure 1 shows the budgets from FY 1990 to 1992 (requested). The total amount of budgets listed above is grouped into ''Technology R & D'' in Figure 1. Figure 1 also shows the budgets for ''Survey & Promotion'' items conducted by NEDO. This paper reviews the history of HDR development in Japan and summarizes the recent development of NEDO's HDR project. Since FY 1985, NEDO has been conducting research to develop basic technologies for hot dry rock geothermal power generation at Hijiori, Okura Village in Yamagata Prefecture. The main purpose of this research is developing a heat extracting circulation system in hot dry rock of depth and temperature similar to those expected for a commercial scale operation. Within this scope, NEDO developed fundamental technologies for creating an artificial geothermal reservoir, establishing hydraulic communication between wells, logging boreholes, observing acoustic emission (AE) events for fracture mapping, evaluating flow through the reservoir, and estimating geothermal heat recovery. In the hot dry rock geothermal project, especially in Japan, it is important to understand how pre-existing fractures affect hydrofracture development. At present, there are a number of methods that can be employed to understand the fractures, but it is necessary to evaluate which are, most appropriate and accurate. Since FY 1989, we have been performing small-scale fracture characterization experiments on-site in I-itate Village, Fukushima Prefecture, where the granite basement rock outcrops.

Physical Description

17-21

Source

  • Proceedings, Geothermal Energy and the Utility Market - The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market; San Francisco, CA, March 24-26, 1992, Geothermal Program Review X

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-920378--4
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 891876
  • Archival Resource Key: ark:/67531/metadc883469

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 24, 1992

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 8, 2016, 9:06 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yamaguchi, Tsutomu. Recent Developments in Japan's HDR Program, article, March 24, 1992; United States. (digital.library.unt.edu/ark:/67531/metadc883469/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.