Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

PDF Version Also Available for Download.

Description

Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through ... continued below

Physical Description

9 p. (0.2 MB)

Creation Information

Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travish, G.; Hogan, M.; Ischebeck, R. et al. August 4, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

Physical Description

9 p. (0.2 MB)

Notes

PDF-file: 9 pages; size: 0.2 Mbytes

Source

  • Presented at: Advanced Accelerator Concepts Workshop 2006, Lake Geneva, WI, United States, Jul 10 - Jul 15, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-223510
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 894768
  • Archival Resource Key: ark:/67531/metadc883435

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 4, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 17, 2017, 2:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travish, G.; Hogan, M.; Ischebeck, R. et al. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments, article, August 4, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc883435/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.