Is U3Ni3Sn4 best described as near a quantum critical point?

PDF Version Also Available for Download.

Description

Although most known non-Fermi liquid (NFL) materials are structurally or chemically disordered, the role of this disorder remains unclear. In particular, very few systems have been discovered that may be stoichiometric and well ordered. To test whether U{sub 3}Ni{sub 3}Sn{sub 4} belongs in this latter class, we present measurements of the x-ray absorption fine structure (XAFS) of polycrystalline and single-crystal U{sub 3}Ni{sub 3}Sn{sub 4} samples that are consistent with no measurable local atomic disorder. We also present temperature-dependent specific heat data in applied magnetic fields as high as 8 T that show features that are inconsistent with the antiferromagnetic Griffiths' ... continued below

Creation Information

Booth, C. H.; Shlyk, L.; Nenkov, K.; Huber, J. G. & De Long, L. E. April 8, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Although most known non-Fermi liquid (NFL) materials are structurally or chemically disordered, the role of this disorder remains unclear. In particular, very few systems have been discovered that may be stoichiometric and well ordered. To test whether U{sub 3}Ni{sub 3}Sn{sub 4} belongs in this latter class, we present measurements of the x-ray absorption fine structure (XAFS) of polycrystalline and single-crystal U{sub 3}Ni{sub 3}Sn{sub 4} samples that are consistent with no measurable local atomic disorder. We also present temperature-dependent specific heat data in applied magnetic fields as high as 8 T that show features that are inconsistent with the antiferromagnetic Griffiths' phase model, but do support the conclusion that a Fermi liquid/NFL crossover temperature increases with applied field. These results are inconsistent with theoretical explanations that require strong disorder effects, but do support the view that U{sub 3}Ni{sub 3}Sn{sub 4} is a stoichoiometric, ordered material that exhibits NFL behavior, and is best described as being near an antiferromagnetic quantum critical point.

Subjects

Source

  • Journal Name: Physical Review B; Journal Volume: 69; Journal Issue: 10; Related Information: Journal Publication Date: 03/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--52457
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 917809
  • Archival Resource Key: ark:/67531/metadc883403

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 8, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2017, 1:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Booth, C. H.; Shlyk, L.; Nenkov, K.; Huber, J. G. & De Long, L. E. Is U3Ni3Sn4 best described as near a quantum critical point?, article, April 8, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc883403/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.