Measurements of B meson decays to (omega) K^{*} and (omega)(rho)

B. Aubert, C. H. Cheng, D. J. Lange, M. C. Simani, D. M. Wright, G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. H. Cahn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groysman, R, G, Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, W. A. Wenzel, T. Abe, D. Aston, R. Bartoldus, N. Berger, A. M. Boyarski, O. L. Buchmueller, R. Claus, M. R. Convery, M. Cristinziani, G. De Nardo, D. Dong, J. Dorfan, D. Dujmic, W. Dunwoodie, S. Fan, R. C. Field, T. Glanzman, S. J. Gowdy, T. Hadig, V. Halyo, C. Hast, T. Hryn'ova, W. R. Innes, M. H. Kelsey, P. Kim, M. L. Kocian, D. W. G. S. Keith, J. Libby, S. Luitz, et al.

March 16, 2006

Physical Review D

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Measurements of B meson decays to ωK^{*} and $\omega \rho$

B. Aubert, ${ }^{1}$ R. Barate,,${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges-Pous, ${ }^{2}$ A. Palano, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ A. W. Borgland, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ M. P. Kelly, ${ }^{9}$ T. E. Latham, ${ }^{9}$ F. F. Wilson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ D. Thiessen, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ L. Teodorescu, ${ }^{11}$
A. E. Blinov, ${ }^{12}$ V. E. Blinov,,12 V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ V. N. Ivanchenko, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ Sh. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. Adam Cunha, ${ }^{17}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ A. Lu, ${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ S. Yang, ${ }^{19}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ P. Rankin, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ J. Zhang, ${ }^{21}$ L. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ J. L. Harton, ${ }^{22}$ A. Soffer,,22 W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ B. Spaan, ${ }^{23}$ D. Altenburg, ${ }^{24}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ E. Feltresi, ${ }^{24}$ A. Hauke, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ R. Müller-Pfefferkorn, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ F. Brochard, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ D. R. Lavin, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi,,${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ A. Sarti, ${ }^{27}$ E. Treadwell, ${ }^{28}$ F. Anulli, ${ }^{29}$ R. Baldini-Ferroli, ${ }^{29}$ A. Calcaterra, ${ }^{29}$ R. de Sangro, ${ }^{29}$ G. Finocchiaro, ${ }^{29}$ P. Patteri, ${ }^{29}$ I. M. Peruzzi, ${ }^{29}$ M. Piccolo,,29 A. Zallo, ${ }^{29}$ A. Buzzo, ${ }^{30}$ R. Capra, ${ }^{30}$ R. Contri, ${ }^{30}$ G. Crosetti, ${ }^{30}$ M. Lo Vetere, ${ }^{30}$ M. Macri, ${ }^{30}$ M. R. Monge,,${ }^{30}$ S. Passaggio, ${ }^{30}$ C. Patrignani, ${ }^{30}$ E. Robutti, ${ }^{30}$ A. Santroni, ${ }^{30}$ S. Tosi, ${ }^{30}$ S. Bailey, ${ }^{31}$ G. Brandenburg, ${ }^{31}$ K. S. Chaisanguanthum, ${ }^{31}$ M. Morii, ${ }^{31}$ E. Won, ${ }^{31}$ R. S. Dubitzky, ${ }^{32}$ U. Langenegger, ${ }^{32}$ J. Marks, ${ }^{32}$ U. Uwer, ${ }^{32}$ W. Bhimji, ${ }^{33}$ D. A. Bowerman, ${ }^{33}$ P. D. Dauncey, ${ }^{33}$ U. Egede, ${ }^{33}$ J. R. Gaillard, ${ }^{33}$ G. W. Morton, ${ }^{33}$ J. A. Nash, ${ }^{33}$ M. B. Nikolich, ${ }^{33}$ G. P. Taylor, ${ }^{33}$ M. J. Charles, ${ }^{34}$ G. J. Grenier, ${ }^{34}$ U. Mallik, ${ }^{34}$ J. Cochran, ${ }^{35}$ H. B. Crawley, ${ }^{35}$ J. Lamsa, ${ }^{35}$ W. T. Meyer, ${ }^{35}$ S. Prell, ${ }^{35}$ E. I. Rosenberg, ${ }^{35}$ A. E. Rubin, ${ }^{35}$ J. Yi, ${ }^{35}$ M. Biasini, ${ }^{36}$ R. Covarelli, ${ }^{36}$ M. Pioppi, ${ }^{36}$ M. Davier, ${ }^{37}$ X. Giroux, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ S. Laplace, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ T. C. Petersen, ${ }^{37}$ S. Plaszczynski, ${ }^{37}$ M. H. Schune, ${ }^{37}$ L. Tantot, ${ }^{37}$ G. Wormser, ${ }^{37}$ C. H. Cheng, ${ }^{38}$ D. J. Lange, ${ }^{38}$ M. C. Simani, ${ }^{38}$ D. M. Wright, ${ }^{38}$ A. J. Bevan, ${ }^{39}$ C. A. Chavez, ${ }^{39}$ J. P. Coleman, ${ }^{39}$ I. J. Forster, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ R. J. Parry, ${ }^{39}$ D. J. Payne, ${ }^{39}$ C. Touramanis, ${ }^{39}$ C. M. Cormack, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ C. L. Brown, ${ }^{41}$ G. Cowan, ${ }^{41}$ R. L. Flack, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ M. G. Green, ${ }^{41}$ P. S. Jackson, ${ }^{41}$ T. R. McMahon, ${ }^{41}$ S. Ricciardi, ${ }^{41}$ F. Salvatore, ${ }^{41}$ M. A. Winter, ${ }^{41}$ D. Brown,,42 C. L. Davis, ${ }^{42}$ J. Allison, ${ }^{43}$ N. R. Barlow, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ M. C. Hodgkinson, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ A. J. Lyon, ${ }^{43}$ J. C. Williams, ${ }^{43}$ A. Farbin, ${ }^{44}$ W. D. Hulsbergen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ D. Kovalskyi, ${ }^{44}$ C. K. Lae, ${ }^{44}$ V. Lillard, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Blaylock, ${ }^{45}$ C. Dallapiccola, ${ }^{45}$ S. S. Hertzbach, ${ }^{45}$ R. Kofler, ${ }^{45}$ V. B. Koptchev, ${ }^{45}$ T. B. Moore, ${ }^{45}$ S. Saremi, ${ }^{45}$ H. Staengle, ${ }^{45}$ S. Willocq, ${ }^{45}$ R. Cowan, ${ }^{46}$ G. Sciolla, ${ }^{46}$ S. J. Sekula, ${ }^{46}$ F. Taylor, ${ }^{46}$
R. K. Yamamoto, ${ }^{46}$ D. J. J. Mangeol, ${ }^{47}$ P. M. Patel, ${ }^{47}$ S. H. Robertson, ${ }^{47}$ A. Lazzaro, ${ }^{48}$ V. Lombardo, ${ }^{48}$ F. Palombo, ${ }^{48}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49}$ R. Kroeger, ${ }^{49}$ J. Reidy, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ S. Brunet, ${ }^{50}$ D. Côté, ${ }^{50}$ P. Taras, ${ }^{50}$ H. Nicholson, ${ }^{51}$ N. Cavallo, ${ }^{52,}$ * F. Fabozzi, ${ }^{52, *}$ C. Gatto, ${ }^{52}$ L. Lista, ${ }^{52}$ D. Monorchio, ${ }^{52}$ P. Paolucci,,52 D. Piccolo, ${ }^{52}$ C. Sciacca, ${ }^{52}$ M. Baak, ${ }^{53}$ H. Bulten, ${ }^{53}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ L. Wilden, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ T. Allmendinger, ${ }^{55}$ K. K. Gan, ${ }^{55}$ K. Honscheid, ${ }^{55}$ D. Hufnagel, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }^{55}$ T. Pulliam, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ R. Ter-Antonyan,,55 Q. K. Wong, ${ }^{55}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ M. Lu, ${ }^{56}$ C. T. Potter, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ E. Torrence, ${ }^{56}$ F. Colecchia, ${ }^{57}$ A. Dorigo, ${ }^{57}$ F. Galeazzi, ${ }^{57}$ M. Margoni, ${ }^{57}$ M. Morandin, ${ }^{57}$ M. Posocco, ${ }^{57}$ M. Rotondo, ${ }^{57}$ F. Simonetto, ${ }^{57}$ R. Stroili, ${ }^{57}$ C. Voci, ${ }^{57}$ M. Benayoun, ${ }^{58}$ H. Briand, ${ }^{58}$ J. Chauveau, ${ }^{58}$ P. David, ${ }^{58}$ Ch. de la Vaissière, ${ }^{58}$ L. Del Buono, ${ }^{58}$ O. Hamon, ${ }^{58}$ M. J. J. John, ${ }^{58}$ Ph. Leruste, ${ }^{58}$ J. Malcles, ${ }^{58}$ J. Ocariz, ${ }^{58}$ M. Pivk, ${ }^{58}$ L. Roos, ${ }^{58}$ S. T'Jampens, ${ }^{58}$ G. Therin, ${ }^{58}$ P. K. Behera, ${ }^{59}$ L. Gladney, ${ }^{59}$ Q. H. Guo, ${ }^{59}$ J. Panetta, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Bondioli, ${ }^{60}$ F. Bucci, ${ }^{60}$ G. Calderini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ M. Rama, ${ }^{60}$ G. Rizzo, ${ }^{60}$ F. Sandrelli, ${ }^{60}$ G. Simi, ${ }^{60}$ J. Walsh, ${ }^{60}$ M. Haire, ${ }^{61}$ D. Judd,,${ }^{61}$ K. Paick, ${ }^{61}$ D. E. Wagoner, ${ }^{61}$ N. Danielson, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y. P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ V. Miftakov, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{62,}{ }^{63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ M. Pierini, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Safai Tehrani, ${ }^{63}$ C. Voena, ${ }^{63}$ S. Christ, ${ }^{64}$ G. Wagner, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ N. De Groot, ${ }^{65}$ B. Franek, ${ }^{65}$ N. I. Geddes, ${ }^{65}$ G. P. Gopal, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ P.-F. Giraud, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ M. Legendre, ${ }^{66}$ G. W. London, ${ }^{66}$ B. Mayer, ${ }^{66}$ G. Schott, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ M. V. Purohit, ${ }^{67}$ A. W. Weidemann, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ F. X. Yumiceva, ${ }^{67}$ T. Abe, ${ }^{68}$ D. Aston,,${ }^{68}$ R. Bartoldus, ${ }^{68}$ N. Berger, ${ }^{68}$ A. M. Boyarski, ${ }^{68}$ O. L. Buchmueller, ${ }^{68}$ R. Claus,,${ }^{68}$ M. R. Convery, ${ }^{68}$ M. Cristinziani, ${ }^{68}$ G. De Nardo, ${ }^{68}$ D. Dong, ${ }^{68}$ J. Dorfan, ${ }^{68}$ D. Dujmic, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ S. Fan, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ T. Hadig, ${ }^{68}$ V. Halyo, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ J. Libby, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O’Grady, ${ }^{68}$ V. E. Ozcan,,${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl,,${ }^{68}$ S. Petrak, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ A. Soha, ${ }^{68}$ J. Stelzer, ${ }^{68}$ J. Strube, ${ }^{56,68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ J. Va’vra, ${ }^{68}$ S. R. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ S. A. Majewski, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ C. Roat, ${ }^{69}$ M. Ahmed, ${ }^{70}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ M. Saleem, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ H. Kim, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. Satpathy, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ I. Kitayama, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ M. Bona, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ S. Dittongo, ${ }^{75}$ S. Grancagnolo, ${ }^{75}$ L. Lanceri, ${ }^{75}$ P. Poropat, ${ }^{75, ~} \dagger$ L. Vitale, ${ }^{75}$ G. Vuagnin,,75 F. Martinez-Vidal, ${ }^{2,76}$ R. S. Panvini, ${ }^{77}$ Sw. Banerjee, ${ }^{78}$ C. M. Brown, ${ }^{78}$ D. Fortin, ${ }^{78}$ P. D. Jackson, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P. F. Harrison, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ H. R. Band,,${ }^{80}$ X. Chen, ${ }^{80}$ B. Cheng, ${ }^{80}$ S. Dasu, ${ }^{80}$ M. Datta, ${ }^{80}$ A. M. Eichenbaum, ${ }^{80}$ K. T. Flood,,${ }^{80}$ M. Graham, ${ }^{80}$ J. J. Hollar, ${ }^{80}$ J. R. Johnson, ${ }^{80}$ P. E. Kutter, ${ }^{80} \mathrm{H} . \mathrm{Li},{ }^{80}$ R. Liu, ${ }^{80}$ A. Mihalyi, ${ }^{80}$ Y. Pan, ${ }^{80}$ R. Prepost, ${ }^{80}$ P. Tan, ${ }^{80}$ J. H. von Wimmersperg-Toeller, ${ }^{80}$ J. Wu, ${ }^{80}$ S. L. Wu, ${ }^{80}$ Z. Yu, ${ }^{80}$ M. G. Greene, ${ }^{81}$ and H. Neal ${ }^{81}$
(The BABAR Collaboration)

[^0][^1]${ }^{81}$ Yale University, New Haven, CT 06511, USA
(Dated: November 16, 2004)

Abstract

We describe searches for B meson decays to the charmless vector-vector final states ωK^{*} and $\omega \rho$ in 89 million $B \bar{B}$ pairs produced in $e^{+} e^{-}$annihilation at $\sqrt{s}=10.58 \mathrm{GeV}$. We measure the following branching fractions in units of $10^{-6}: \mathcal{B}\left(B^{0} \rightarrow \omega K^{* 0}\right)=3.4_{-1.6}^{+1.8} \pm 0.4(<6.0), \mathcal{B}\left(B^{+} \rightarrow \omega K^{*+}\right)=$ $3.5_{-2.0}^{+2.5} \pm 0.7 \quad(<7.4), \mathcal{B}\left(B^{0} \rightarrow \omega \rho^{0}\right)=0.6_{-1.1}^{+1.3} \pm 0.4 \quad(<3.3)$, and $\mathcal{B}\left(B^{+} \rightarrow \omega \rho^{+}\right)=12.6_{-3.3}^{+3.7} \pm 1.6$. The first error quoted is statistical, the second systematic, and the upper limits are defined at 90% confidence level. For $B^{+} \rightarrow \omega \rho^{+}$we also measure the longitudinal spin alignment fraction $f_{L}=0.88_{-0.15}^{+0.12} \pm 0.03$ and charge asymmetry $\mathcal{A}_{c h}=(5 \pm 26 \pm 2) \%$.

PACS numbers: $13.25 . \mathrm{Hw}, 12.15 . \mathrm{Hh}$, 11.30.Er

The BABAR [1-3] and Belle [4] experiments have reported observations of B meson decays to most of the charge states of two-body combinations of ρ and K^{*} mesons. Here we present the results of searches for decays to final states with an ω meson plus a K^{*} or ρ meson.

The decays $B \rightarrow V_{1} V_{2}$, where V_{1} and V_{2} are spin-one mesons, proceed through a combination of $S-, P_{-}$, and D wave amplitudes, or in the helicity basis by amplitudes $A_{0}, A_{ \pm 1}$. The subscripts give the helicities of the vector mesons. The longitudinal A_{0} amplitude is a linear combination of S - and D-wave ($C P$ even), while the transverse $A_{ \pm 1}$ contain all three partial waves [5].

The spins of the vector mesons are analyzed by their decays into pseudoscalar mesons. We define the helicity frame for each vector meson as its rest frame with polar axis along the direction of the boost from the B rest frame. Because of the limited statistics of the present study we integrate over the azimuthal angles, exploiting the uniform azimuthal acceptance. The angular distribution is

$$
\begin{align*}
& \frac{1}{\Gamma} \frac{d^{2} \Gamma}{d \cos \theta_{1} d \cos \theta_{2}}= \tag{1}\\
& \frac{9}{4}\left\{\frac{1}{4}\left(1-f_{L}\right) \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}+f_{L} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}\right\}
\end{align*}
$$

where θ_{k} is the decay angle (defined below) in the V_{k} helicity frame, and $f_{L}=\left|A_{0}\right|^{2} /\left(\left|A_{+1}\right|^{2}+\left|A_{0}\right|^{2}+\left|A_{-1}\right|^{2}\right)$ is the fraction of the longitudinal spin component. Measurements in $B \rightarrow \rho \rho$ decays find values close to $f_{L}=1$ [1-4], consistent with expectation [6], while smaller values found in $B \rightarrow \phi K^{*}$ [7] are theoretically puzzling. Since the different angular distributions for the longitudinal and transverse components lead to different acceptances, the f_{L}-dependence needs to be considered in searches as well as in detailed studies of $B \rightarrow V_{1} V_{2}$ decays.

In the decays of B^{+}(or the flavor-definite $B^{0} \rightarrow$ $K^{* 0} X, K^{* 0} \rightarrow K^{+} \pi^{-}$) and their charge conjugates it is also of interest to measure the direct- $C P$-violating charge asymmetry $\mathcal{A}_{c h} \equiv\left(\Gamma^{-}-\Gamma^{+}\right) /\left(\Gamma^{-}+\Gamma^{+}\right)$in the rates $\Gamma^{ \pm}=\Gamma\left(B^{ \pm} \rightarrow f^{ \pm}\right)$, for each final state $f^{ \pm}$.

In this study we search for the four decays $B^{0} \rightarrow \omega K^{* 0}$, $B^{+} \rightarrow \omega K^{*+}, B^{0} \rightarrow \omega \rho^{0}$, and $B^{+} \rightarrow \omega \rho^{+}$[8]. A previ-

FIG. 1: Representative Feynman diagrams for $B \rightarrow \omega \rho$ and $B \rightarrow \omega K^{*}$ decays: (a) external tree; (b, c) CKM-favored gluonic penguins; (d) CKM-suppressed penguin; (e, f) destructively interfering color-suppressed trees.
ously published search by CLEO [9] established 90% confidence level (C.L.) upper limits on the branching fractions of $(23,87,11$, and 61$) \times 10^{-6}$, respectively. Because these charmless B decays involve couplings with small CKM mixing matrix elements, several amplitudes potentially contribute with similar strengths, as indicated in Fig. 1. The B^{+}modes receive contributions from external tree, color-suppressed tree, and gluonic penguin amplitudes, with the external tree (a) favored for $B^{+} \rightarrow$ $\omega \rho^{+}$, and the penguin (b) strongly favored by CKM couplings for $B^{+} \rightarrow \omega K^{*+}$. For the B^{0} modes there are no external tree contributions, and again, for $B^{0} \rightarrow \omega K^{* 0}$

TABLE I: Selection requirements on the invariant mass (in MeV) and decay angle of B-daughter resonances.

State	inv. mass	decay angle
ρ^{0}	$510<m(\pi \pi)<1060$	$-0.85<\cos \theta<0.85$
ρ^{+}	$470<m(\pi \pi)<1070$	$-0.6<\cos \theta<0.85$
$K_{K^{+} \pi^{-}}^{* 0}, K_{K_{S}^{0} \pi^{+}}^{*+}$	$755<m(K \pi)<1035$	$-0.85<\cos \theta<1.0$
$K_{K^{+} \pi^{0}}^{*}$	$755<m(K \pi)<1035$	$-0.6<\cos \theta<1.0$
ω	$735<m(\pi \pi \pi)<825$	$0<\|\cos \theta\|<1.0$
π^{0}	$120<m(\gamma \gamma)<150$	
K_{S}^{0}	$488<m(\pi \pi)<508$	

the penguin (c) is CKM-favored. For $B^{0} \rightarrow \omega \rho^{0}$ the color-suppressed tree amplitudes (e, f) almost cancel [10] because of the different isospins of the final-state mesons, leaving only a Cabibbo-suppressed penguin (d). Weak exchange and annihilation amplitudes are expected to be negligible.

Theoretical estimates of the branching fractions for vector-vector decays include those based on isospin relations among various modes [11], effective Hamiltonians with factorization and specific B-to-light-meson form factors [10, 12-14], and QCD factorization [15]. The estimated branching fractions lie in the range $<10^{-6}$ (for $B^{0} \rightarrow \omega \rho^{0}$) to $20 \times 10^{-6}\left(\right.$ for $\left.B^{+} \rightarrow \omega \rho^{+}\right)$.

The results presented here are based on data collected with the BABAR detector [16] at the PEP-II asymmetric $e^{+} e^{-}$collider [17] located at the Stanford Linear Accelerator Center. An integrated luminosity of $81.9 \mathrm{fb}^{-1}$, corresponding to 88.9 ± 1.0 million $B \bar{B}$ pairs, was recorded at the $\Upsilon(4 S)$ resonance (center-of-mass energy $\sqrt{s}=10.58 \mathrm{GeV})$.

Charged particles from the $e^{+} e^{-}$interactions are detected, and their momenta measured, by a combination of five layers of double-sided silicon microstrip detectors surrounded by a 40-layer drift chamber, both operating in the 1.5-T magnetic field of a superconducting solenoid. We identify photons and electrons using a $\mathrm{CsI}(\mathrm{Tl})$ electromagnetic calorimeter (EMC). Further charged particle identification (PID) is provided by the average energy loss $(d E / d x)$ in the tracking devices and by an internally reflecting ring imaging Cherenkov detector (DIRC) covering the central region.

We reconstruct the B-daughter candidates through their decays $\rho^{0} \rightarrow \pi^{+} \pi^{-}, \rho^{+} \rightarrow \pi^{+} \pi^{0}, K^{* 0} \rightarrow$ $K^{+} \pi^{-}\left(K_{K^{+} \pi^{-}}^{* 0}\right), \quad K^{*+} \rightarrow K^{+} \pi^{0}\left(K_{K^{+} \pi^{0}}^{*+}\right), K^{*+} \rightarrow$ $K_{S}^{0} \pi^{+}\left(K_{K_{S}^{0} \pi^{+}}^{*+}\right), \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \rightarrow \gamma \gamma$, and $K_{S}^{0} \rightarrow$ $\pi^{+} \pi^{-}$. Table I lists the requirements on the invariant mass of these particles' final states. For the ρ, K^{*}, and ω invariant masses these requirements are set loose enough to include sidebands, as these mass values are treated as observables in the maximum-likelihood fit described below. For K_{S}^{0} candidates we further require the threedimensional flight distance from the event primary vertex
to be greater than three times its uncertainty. Secondary pions and kaons in ρ, K^{*}, and ω candidates are rejected if their DIRC, $d E / d x$, and EMC PID signature satisfies tight consistency with protons or electrons, and the kaons (pions) must (must not) have a kaon signature.

Table I also gives the restrictions on the K^{*} and ρ helicity angles θ made to avoid regions of rapid acceptance variation or combinatorial background from soft particles. We define θ as the angle relative to the helicity axis of: the normal to the decay plane for ω, the positivelycharged (or only charged) daughter momentum for ρ, and the daughter kaon momentum for K^{*}.

A B-meson candidate is characterized kinematically by the energy-substituted mass $m_{\mathrm{ES}}=$ $\left[\left(\frac{1}{2} s+\mathbf{p}_{0} \cdot \mathbf{p}_{B}\right)^{2} / E_{0}^{2}-\mathbf{p}_{B}^{2}\right]^{\frac{1}{2}}$ and energy difference $\Delta E=E_{B}^{*}-\frac{1}{2} \sqrt{s}$, where the subscripts 0 and B refer to the initial $\Upsilon(4 S)$ and to the B candidate, respectively, and the asterisk denotes the $\Upsilon(4 S)$ frame. The resolution on $\Delta E\left(m_{\mathrm{ES}}\right)$ is about $30 \mathrm{MeV}(3.0 \mathrm{MeV})$. We require $|\Delta E| \leq 0.2 \mathrm{GeV}$ and $5.20 \leq m_{\mathrm{ES}} \leq 5.29 \mathrm{GeV}$. The average number of candidates found per selected event is in the range 1.15 to 1.2 , depending on the final state. We choose the candidate with the smallest value of a χ^{2} constructed from the deviations of the daughter resonance masses from their expected values.

Backgrounds arise primarily from random combinations of particles in continuum $e^{+} e^{-} \rightarrow q \bar{q}$ events $(q=$ $u, d, s, c)$. We reduce these by selecting on the angle θ_{T} between the thrust axis of the B candidate in the $\Upsilon(4 S)$ frame and that of the rest of the charged tracks and neutral calorimeter clusters in the event. The distribution of $\left|\cos \theta_{\mathrm{T}}\right|$ is sharply peaked near 1.0 for combinations drawn from jet-like $q \bar{q}$ pairs, and nearly uniform for B meson decays. The requirements, which optimize the expected signal yield relative to its background-dominated statistical error, are $\left|\cos \theta_{\mathrm{T}}\right|<0.8$ for the K^{*} modes and $\left|\cos \theta_{\mathrm{T}}\right|<0.65$ for the ρ modes. In the maximumlikelihood fit we also use a Fisher discriminant \mathcal{F} [18] that combines four variables defined in the $\Upsilon(4 S)$ frame: the angles with respect to the beam axis of the B momentum and B thrust axis, and the zeroth and second angular moments $L_{0,2}$ of the energy flow about the B thrust axis. The moments are defined by $L_{j}=\sum_{i} p_{i} \times\left|\cos \theta_{i}\right|^{j}$, where θ_{i} is the angle with respect to the B thrust axis of track or neutral cluster i, p_{i} is its momentum, and the sum excludes the B candidate daughters.

From Monte Carlo (MC) simulation [19] we estimate the residual charmless $B \bar{B}$ background to be 0.1% or less of the total sample in all cases. To allow for contributions possibly missing in the simulation we include a component for these in the fit described below, with a yield free to vary.

We obtain yields, f_{L}, and $\mathcal{A}_{c h}$ from extended unbinned maximum-likelihood fits with input observables $\Delta E, m_{\mathrm{ES}}, \mathcal{F}$, and for vector meson k the mass m_{k} and helicity-frame decay angle θ_{k}. For each event i and

TABLE II: Signal yield Y and bias Y_{0} with their statistical uncertainties, detection efficiency ϵ, daughter branching fraction product, significance S (with systematic uncertainties included), measured branching fraction, and 90\% C.L. upper limit for each mode. The number of produced B mesons is $(88.9 \pm 1.0) \times 10^{6}$.

Mode	$\begin{gathered} Y \\ \text { (events) } \end{gathered}$	$\begin{gathered} Y_{0} \\ \text { (events) } \end{gathered}$	$\begin{gathered} \epsilon \\ (\%) \end{gathered}$	$\prod_{(\%)} \mathcal{B}_{i}$	$\begin{gathered} S \\ (\sigma) \end{gathered}$	$\begin{gathered} \mathcal{B} \\ \left(10^{-6}\right) \end{gathered}$	$\begin{aligned} & \mathcal{B} \text { U.L. } \\ & \left(10^{-6}\right) \end{aligned}$
$\omega K^{* 0}$	$26.1_{-10.8}^{+12.1}$	3.2 ± 1.1	13.2	59	2.2	$3.4-1.6 \pm 0.4$	6.0
$\omega K_{K_{S}^{0} \pi^{+}}^{*+}$	$11.6_{-7.2}^{+8.7}$	2.9 ± 1.1	13.3	20	1.3	$3.9{ }_{-3.0}^{+3.7} \pm 0.9$	-
$\omega K_{K+\pi^{0}}^{*+}$	5.4 .4 .4	-0.1 ± 0.8	6.7	30	1.4	$3.1{ }_{-2.4}^{+3.4} \pm 0.9$	-
$\omega \boldsymbol{K}^{*+}$					1.9	$3.5{ }_{-2.0}^{+2.5} \pm 0.7$	7.4
$\omega \rho^{0}$	$4.3_{-9.1}^{+11.0}$	-0.5 ± 1.0	10.5	89	0.4	$0.6{ }_{-1.1}^{+1.3} \pm 0.4$	3.3
$\omega \rho^{+}$	$57.7_{-16.5}^{+18.5}$	-1.3 ± 2.8	5.4	89	4.7	$12.6{ }_{-3.3}^{+3.7} \pm 1.6$	-

hypothesis j (signal, continuum background, $B \bar{B}$ background) we define the probability density function (PDF)

$$
\begin{equation*}
\mathcal{P}_{j}^{i}=\mathcal{P}_{j}\left(m_{\mathrm{ES}}{ }^{i}\right) \mathcal{P}_{j}\left(\Delta E^{i}\right) \mathcal{P}_{j}\left(\mathcal{F}^{i}\right) \mathcal{P}_{j}\left(m_{1}^{i}, m_{2}^{i}, \theta_{1}^{i}, \theta_{2}^{i}\right) \tag{2}
\end{equation*}
$$

We check for correlations in the background observables beyond those contained in this PDF and find them to be small. For the signal component, we correct for the effect of neglected correlations (see below). The likelihood function is

$$
\begin{equation*}
\mathcal{L}=\frac{e^{-\left(\sum Y_{j}\right)}}{N!} \prod_{i=1}^{N} \sum_{j} Y_{j} \mathcal{P}_{j}^{i} \tag{3}
\end{equation*}
$$

where Y_{j} is the yield of events of hypothesis j found by maximizing \mathcal{L}, and N is the number of events in the sample.

The PDF factor for the resonances in the signal takes the form $\mathcal{P}_{1, \text { sig }}\left(m_{1}^{i}\right) \mathcal{P}_{2, \operatorname{sig}}\left(m_{2}^{i}\right) \mathcal{Q}\left(\theta_{1}^{i}, \theta_{2}^{i}\right)$ with \mathcal{Q} given by Eq. 1 modified to account for detector acceptance. For $q \bar{q}$ background it is given for each resonance independently by $\mathcal{P}_{q \bar{q}}\left(m_{k}^{i}, \theta_{k}^{i}\right)=\mathcal{P}_{\mathrm{pk}}\left(m_{k}^{i}\right) \mathcal{P}_{\mathrm{pk}}\left(\theta_{k}^{i}\right)+\mathcal{P}_{\mathrm{c}}\left(m_{k}^{i}\right) \mathcal{P}_{\mathrm{c}}\left(\theta_{k}^{i}\right)$, distinguishing between true resonance ($\mathcal{P}_{\mathrm{pk}}$) and combinatorial components $\left(\mathcal{P}_{\mathrm{c}}\right)$. For the $B \bar{B}$ background we take all four mass and helicity angle observables to be independent. The other PDF forms are: sum of two Gaussians for $\mathcal{P}_{\text {sig }}\left(m_{\mathrm{ES}}\right), \mathcal{P}_{\text {sig }}(\Delta E)$, and the peaking components of $\mathcal{P}_{j}\left(m_{k}\right)$; a conjunction of two gaussians with different widths below and above the peak for $\mathcal{P}_{j}(\mathcal{F})$; and linear or quadratic dependences for ΔE, m_{k}, and helicity cosines for $q \bar{q}$ combinatorial background. The $q \bar{q}$ background in m_{ES} is described by the function $x \sqrt{1-x^{2}} \exp \left[-\xi\left(1-x^{2}\right)\right]$, with $x \equiv 2 m_{\mathrm{ES}} / \sqrt{s}$ and parameter ξ.

For the signal and $B \bar{B}$ background components we determine the PDF parameters from simulation. We study large control samples of B decays to charmed final states of similar topology to verify the simulated resolutions in ΔE and m_{ES}, adjusting the PDFs to account for any differences found. For the continuum background we use $\left(m_{\mathrm{ES}}, \Delta E\right)$ sideband data to obtain initial values, before
applying the fit to data in the signal region, and ultimately leave them free to vary in the final fit.

Free parameters of the fit include signal and background yields, background PDF parameters, and for the mode for which we find a significant signal, f_{L} and the signal and background charge asymmetries. For the fits without significant signal we vary f_{L} by hand, basing the upper limit on the fit with $f_{L}=0.9$, a choice that is consistent with a priori expectations and gives a conservative efficiency estimate. The free background-PDF parameters are ξ for m_{ES}, slope for ΔE, area and slope of the combinatorial component for m_{k}, and the peak position and lower and upper width parameters for \mathcal{F}.

We evaluate possible biases from our neglect of correlations among discriminating variables in the PDFs by fitting ensembles of simulated experiments into which we have embedded the expected number of signal events randomly extracted from the fully simulated MC samples. We give in Table II the values found for bias for each mode. Events from a weighted mixture of simulated $B \bar{B}$ background decays are included, and so the bias we measure includes the effect of crossfeed from these modes.

In Table II we show for each decay mode the measured branching fraction together with the quantities entering into its computation and with its uncertainty and significance. The statistical error on the signal yield or branching fraction, f_{L}, and $\mathcal{A}_{c h}$ is taken as the change in the central value when the quantity $-2 \ln \mathcal{L}$ increases by one unit from its minimum value. The significance is taken as the square root of the difference between the value of $-2 \ln \mathcal{L}$ (with systematic uncertainties included) for zero signal and the value at its minimum. For all modes except $B^{+} \rightarrow \omega \rho^{+}$we quote a 90% C.L. upper limit, taken to be the branching fraction below which lies 90% of the total of the likelihood integral in the positive branching fraction region. In calculating branching fractions we assume that the decay rates of the $\Upsilon(4 S)$ to $B^{+} B^{-}$ and $B^{0} \bar{B}^{0}$ are equal. For decays with K^{*+}, we combine results from the two K^{*} decay channels by adding the values of $-2 \ln \mathcal{L}$, taking into account the correlated and uncorrelated systematic errors.

FIG. 2: Projections of m_{ES} (left) and ΔE (right) with a cut on the per-event signal/total likelihood ratio for $(\mathrm{a}, \mathrm{b}) B^{0} \rightarrow$ $\omega K^{* 0},(\mathrm{c}, \mathrm{d}) B^{+} \rightarrow \omega K^{*+}$, (e, f) $B^{0} \rightarrow \omega \rho^{0}$, and (g, h) $B^{+} \rightarrow$ $\omega \rho^{+}$. The solid (dashed) curve gives the total (background) PDF, computed without the variable plotted, and projected onto the same subspace as the data.

FIG. 3: Background-subtracted projections of helicity cosines for (a) ω and (b) ρ^{+}from the fit for $B^{+} \rightarrow \omega \rho^{+}$.

We present in Fig. 2 the data and PDFs projected onto m_{ES} and ΔE, for subsamples enriched with a modedependent threshold requirement on the ratio of signal to total likelihood (computed without the PDF associated with the variable plotted) chosen to optimise the significance of signal in the resulting subsample. Fig. 3 gives background-subtracted projections onto the helicity angle cosines for $B^{+} \rightarrow \omega \rho^{+}$corresponding to the fit result $f_{L}=0.88_{-0.15}^{+0.12} \pm 0.03$; the dominance of the term proportional to f_{L} in Eq. 1 is evident.

The branching fraction value \mathcal{B} given in Table II for
$B^{+} \rightarrow \omega \rho^{+}$comes from a direct fit with the free parameters \mathcal{B} and f_{L}, as well as $\mathcal{A}_{\text {ch }}$. This choice exploits the feature that \mathcal{B} is less correlated with f_{L} than either the yield or efficiency taken separately. The behavior of $-2 \ln \mathcal{L}\left(f_{L}, \mathcal{B}\right)$ is shown in Fig. 4.

FIG. 4: Distribution of $\chi^{2}=-2 \ln \mathcal{L}\left(f_{L}, \mathcal{B}\right)$ for $B^{+} \rightarrow \omega \rho^{+}$. The solid dot gives the central value; curves give the contours in 1-sigma steps $\left(\Delta \sqrt{\chi^{2}}=1\right)$ out to four sigma.

Most of the systematic uncertainties on the branching fractions arising from lack of knowledge of the PDFs have been included in the statistical error since most background parameters are free in the fit. For the signal, the uncertainties in PDF parameters are estimated from the consistency of fits to MC and data in control modes. Varying the signal-PDF parameters within these errors, we estimate yield uncertainties of 1-4 events, depending on the mode. The uncertainty in the fit-bias correction is taken to be half of the correction itself. Similarly we estimate the uncertainty from modeling the $B \bar{B}$ backgrounds by taking half of the contribution of that component to the fitted signal yield. These additive systematic errors are dominant for the modes with little or no signal yield. We have also considered backgrounds from B decays to the same ultimate final state as the signal. The helicity angle restrctions given in Table I suppress $\omega \pi$ or ωK subsystems in the region of known resonances. For the $B^{0} \rightarrow \omega \rho^{0}$ and $B^{0} \rightarrow \omega K^{* 0}$ upper limits, inclusion of the helicity-angle PDF with fixed $f_{L}=0.9$ reduces to a negligible level the effect of interferences with possible S-wave $\pi-(\pi, K)$ states.

Uncertainties in our knowledge of the efficiency, found from auxiliary studies, include $0.8 \% \times N_{t}, 2.5 \% \times N_{\gamma}$, and 4% for a K_{S}^{0} decay, where N_{t} and N_{γ} are the number of tracks and photons, respectively, in the B candidate. Our estimate of the B-production systematic error is 1.1%. Published data [20] provide the uncertainties in the B-daughter product branching fractions (1\%). The uncertainties in the efficiency from the event selection are $1-3 \%$ for the requirement on $\cos \theta_{\mathrm{T}}$ and 1% for PID for
the modes with a charged kaon. The dependence of efficiency on f_{L} causes uncertainties of $2-6 \%$ in the $B \rightarrow \omega K$ and $B^{0} \rightarrow \omega \rho^{0}$ measurements.

The 0.03 systematic error on f_{L} for $B^{+} \rightarrow \omega \rho^{+}$comes from imperfect representation of correlations in the PDF, and is estimated from fits to fully simulated MC samples. From several large inclusive kaon and B-decay samples, we find a systematic uncertainty for $\mathcal{A}_{c h}$ of 2% due mainly to the dependence of reconstruction efficiency on the charge of the ρ-daughter charged pion. The value of $\mathcal{A}_{c h}^{q q}=(-1.0 \pm 0.7) \%$ that we find for the background in the $B^{+} \rightarrow \omega \rho^{+}$fit provides confirmation of this estimate.

In summary, we have performed searches for the previously undetected decays $B^{0} \rightarrow \omega K^{* 0}, B^{+} \rightarrow \omega K^{*+}$, $B^{0} \rightarrow \omega \rho^{0}$ and $B^{+} \rightarrow \omega \rho^{+}$. We observe $B^{+} \rightarrow \omega \rho^{+}$with a significance of 4.7σ, and establish improved 90% C.L. upper limits for the other modes:

$$
\begin{aligned}
\mathcal{B}\left(B^{0} \rightarrow \omega K^{* 0}\right) & =\left(3.4_{-1.6}^{+1.8} \pm 0.4 \quad(<6.0)\right) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow \omega K^{*+}\right) & =\left(3.5_{-2.0}^{+2.5} \pm 0.7 \quad(<7.4)\right) \times 10^{-6} \\
\mathcal{B}\left(B^{0} \rightarrow \omega \rho^{0}\right) & =\left(0.6_{-1.1}^{+1.3} \pm 0.4 \quad(<3.3)\right) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow \omega \rho^{+}\right) & =\left(12.6_{-3.3}^{+3.7} \pm 1.6\right) \times 10^{-6},
\end{aligned}
$$

where the first error quoted is statistical and the second systematic. For $B^{+} \rightarrow \omega \rho^{+}$we also measure the longitudinal polarization fraction

$$
f_{L}=0.88_{-0.15}^{+0.12} \pm 0.03
$$

and charge asymmetry

$$
\mathcal{A}_{c h}=(5 \pm 26 \pm 2) \%
$$

We find that the longitudinal spin alignment is dominant, as for the $\rho \rho$ modes [1-4]. The central value of the branching fraction for $B^{+} \rightarrow \omega \rho^{+}$is about half of those found for $B^{+} \rightarrow \rho^{+} \rho^{0}$ and $B^{0} \rightarrow \rho^{+} \rho^{-}$. All of our branching fraction results are in general agreement within errors with the theoretical estimates.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and

NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università della Basilicata, Potenza, Italy
${ }^{\dagger}$ Deceased
[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003).
[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 69, 031102 (2004).
[3] BABAR Collaboration, B. Aubert et al., hep-ex/0404029
[4] BELLE Collaboration, J. Zhang et al., Phys. Rev. Lett. 91, 221801 (2003).
[5] Amol S. Dighe et al., Phys. Lett. B 369, 144 (1996).
[6] A. Ali et al., Z. Phys. C 1, 269 (1979); M. Suzuki, Phys. Rev. D 66, 054018 (2002).
[7] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003); BELLE Collaboration, K.-F. Chen et al., Phys. Rev. Lett. 91, 201801 (2003).
[8] Charge-conjugate reactions are included implicitly.
[9] CLEO Collaboration (T. Bergfeld et al.), Phys. Rev. Lett. 81, 272 (1998).
[10] A. Ali, G. Kramer, and C. D. Lu, Phys. Rev. D 58, 094009 (1998).
[11] David Atwood and Amarjit Soni, Phys. Rev. D 59, 013007 (1999).
[12] Y. H. Chen et al., Phys. Rev. D 60, 094014 (1999).
[13] A. Ali, G. Kramer, and C. D. Lu, Phys. Rev. D 59, 014005 (1999).
[14] Wei-Shu Hou and Kwei-Chou Yang, Phys. Rev. D 61, 073014 (2000).
[15] Hai-Yang Chang and Kwei-Chou Yang, Phys. Lett. B 511, 40 (2001).
[16] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Meth. A 479, 1 (2002).
[17] PEP-II Conceptual Design Report, SLAC-R-418 (1993).
[18] R. A. Fisher, Annals of Eugenics 7, 179 (1936).
[19] The BABAR detector Monte Carlo simulation is based on GEANT4: S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003).
[20] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

This work was performed in part under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ Universitad Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, BC, Canada V6T 1Z1
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, CA 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, CA 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, CA 92521, USA

[^1]: ${ }^{16}$ University of California at San Diego, La Jolla, CA 92093, USA
 ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, CA 93106, USA
 ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
 ${ }^{19}$ California Institute of Technology, Pasadena, CA 91125, USA
 ${ }^{20}$ University of Cincinnati, Cincinnati, OH 45221, USA
 ${ }^{21}$ University of Colorado, Boulder, CO 80309, USA
 ${ }^{22}$ Colorado State University, Fort Collins, CO 80523, USA
 ${ }^{23}$ Universität Dortmund, Institut fur Physik, D-44221 Dortmund, Germany
 ${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
 ${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{28}$ Florida AछM University, Tallahassee, FL 32307, USA
 ${ }^{29}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{30}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{31}$ Harvard University, Cambridge, MA 02138, USA
 ${ }^{32}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 ${ }^{33}$ Imperial College London, London, SW7 2AZ, United Kingdom
 ${ }^{34}$ University of Iowa, Iowa City, IA 52242, USA
 ${ }^{35}$ Iowa State University, Ames, IA 50011-3160, USA
 ${ }^{36}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
 ${ }^{37}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
 ${ }^{38}$ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
 ${ }^{39}$ University of Liverpool, Liverpool L69 72E, United Kingdom
 ${ }^{40}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{41}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
 ${ }^{42}$ University of Louisville, Louisville, KY 40292, USA
 ${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{44}$ University of Maryland, College Park, MD 20742, USA
 ${ }^{45}$ University of Massachusetts, Amherst, MA 01003, USA
 ${ }^{46}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA
 ${ }^{47}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
 ${ }^{48}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
 ${ }^{49}$ University of Mississippi, University, MS 38677, USA
 ${ }^{50}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
 ${ }^{51}$ Mount Holyoke College, South Hadley, MA 01075, USA
 ${ }^{52}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
 ${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{54}$ University of Notre Dame, Notre Dame, IN 46556, USA
 ${ }^{55}$ Ohio State University, Columbus, OH 43210, USA
 ${ }^{56}$ University of Oregon, Eugene, OR 97403, USA
 ${ }^{57}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
 ${ }^{58}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
 ${ }^{59}$ University of Pennsylvania, Philadelphia, PA 19104, USA
 ${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
 ${ }^{61}$ Prairie View A $\mathfrak{\xi} M$ University, Prairie View, TX 77446, USA
 ${ }^{62}$ Princeton University, Princeton, NJ 08544, USA
 ${ }^{63}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
 ${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
 ${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
 ${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{67}$ University of South Carolina, Columbia, SC 29208, USA
 ${ }^{68}$ Stanford Linear Accelerator Center, Stanford, CA 94309, USA
 ${ }^{69}$ Stanford University, Stanford, CA 94305-4060, USA
 ${ }^{70}$ State University of New York, Albany, NY 12222, USA
 ${ }^{71}$ University of Tennessee, Knoxville, TN 37996, USA
 ${ }^{72}$ University of Texas at Austin, Austin, TX 78712, USA
 ${ }^{73}$ University of Texas at Dallas, Richardson, TX 75083, USA
 ${ }^{74}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
 ${ }^{75}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
 ${ }^{76}$ Universitad de Valencia, E-46100 Burjassot, Valencia, Spain
 ${ }^{77}$ Vanderbilt University, Nashville, TN 37235, USA
 ${ }^{78}$ University of Victoria, Victoria, BC, Canada V8W 3P6
 ${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

