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PARALLEL EIGENSOLVER FOR H(curl) PROBLEMS USING
H1-AUXILIARY SPACE AMG PRECONDITIONING

TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

Abstract. This report describes an application of the recently developed H1-auxiliary
space preconditioner for H(curl) problems to the Maxwell eigenvalue problem. The
auxiliary space method based on the new (HX) finite element space decomposition
introduced in [7], was implemented in the hypre library, [10, 11] under the name AMS.
The eigensolver considered in the present paper, referred to as the AME, is an extension
of the AMS. It is based on the locally optimal block eigensolver LOBPCG [9] and the
parallel AMG (algebraic multigrid) solver BoomerAMG [2] from the hypre library. AME
is designed to compute a block of few minimal nonzero eigenvalues and eigenvectors,
for general unstructured finite element discretizations utilizing the lowest order Nédélec
elements. The main goal of the current report is to document the usage of AME and to
illustrate its parallel scalability.

1. Introduction

The computation of Maxwell eigenvalues is a challenging problem with important
practical applications in the design of linear accelerators, optical waveguides and lasers.
Together with the definite, semidefinite and indefinite Maxwell equations, it is one of the
the major problems in computational electromagnetics. In this report we show how the
previously developed preconditioner for (semi)definite Maxwell problems can be used to
obtain a robust solver for the corresponding eigenvalue problem.

Let Ω be a three-dimensional, simply-connected domain, and Th be a shape regular
mesh on Ω. Associated with Th are the spaces of continuous piecewise linear finite ele-
ments Sh, and the lowest order Nédélec finite element space Vh. The Maxwell eigenvalue
problem has the following variational form: find the nonzero eigenvectors u ∈ Vh and
eigenvalues λ, satisfying

(1.1) (α curlu, curlv) = λ (β u,v) , for all v ∈ Vh

and

(1.2) (β u,∇φ) = 0 , for all φ ∈ Sh .

Here α > 0 and β > 0 are given scalar coefficients, and the second condition guarantees
that the eigenvectors (scaled by β) are discretely divergence free.

Let A and M be the stiffness and (weighted) mass matrices corresponding to (1.1).
Then, we are interested in finding few minimal nonzero eigenpairs (λ,x) of the linear
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eigenproblem

(1.3) Ax = λMx

subject to

(1.4) GtMx = 0 .

Here G is the discrete gradient matrix representing the edges of the mesh in terms of its
vertices, see [11] for more details. Note that the matrix A is singular, which motivates
many eigensolvers to replace (1.3) with the equivalent problem

(1.5) (A + M)x = (λ + 1)Mx .

Our approach can use any of the above formulations, but we prefer (1.3), since it is
somewhat cheaper, both in terms of memory usage and total running time.

Let B be the H1-auxiliary space preconditioner [7, 11] corresponding to A, or A+M
if we have chosen the formulation (1.5). We use B in the iterative block eigensolver
LOBPCG [9]. One advantage of this choice is that we don’t need a guess for the mini-
mal eigenvalue, as in most shift-and-invert algorithms. LOBPCG computes the matrix
Xk+1 representing the next eigenvectors approximation based on a three-term recurrence
involving Xk, Xk−1 and B(AXk −MXkΛk). More specifically, each Xk has number of
columns equal to the number of eigenvectors we want to compute. Here Λk is a diagonal
matrix representing the current approximations of the eigenvalues. Since we want to
perform this iteration in the subspace satisfying (1.4), we have to guarantee that the
result of B is discretely divergence free. This can be achieved by filtering the gradient
component of the vectors using the projection

P = I −G (GtMG)−1 GtM .

In practice, P is only approximated and there are a couple of different ways to do that,
see [6, 12]. In the current implementation of AME, we follow each application of the
preconditioner by an approximation of P where the inverse is replaced by a PCG-AMG
solver for the Laplacian–like matrix GtMG.

The remainder of the report is organized as follows: the parallel version of the eigen-
solver, as implemented in the hypre library, is described in Section 2. Section 3 contains
a set of numerical experiments demonstrating the parallel scalability and overall perfor-
mance of the method.

2. The AME implementation in hypre

In this section we discuss the parallel implementation of the H1-based auxiliary space
eigensolver in the hypre library under the name AME (Auxiliary Maxwell Eigensolver).
Below we list the sequence of hypre calls needed to create and use it. First, we allocate
the HYPRE_Solver object:

HYPRE_Solver solver;

HYPRE_AMECreate(&solver);

We assume that the user has built an AMS preconditioner for the stiffness matrix A.
See the report [11] for a detailed description of this process. The preconditioner should
be passed to AME before the setup phase using the following command:

HYPRE_Solver ams_precond;

HYPRE_AMESetAMSSolver(solver, ams_precond);
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The user is also required to provide the mass matrix M .

HYPRE_AMESetMassMatrix(solver, M);

The number of desired eigenvectors, referred to as block_size, is set with

HYPRE_AMESetBlockSize(solver, block_size);

The remaining solver parameters are optional. For example, the user can set the
maximum number of iterations, the convergence tolerance and the output level with

HYPRE_AMESetMaxIter(solver, maxit); /* default value: 100 */

HYPRE_AMESetTol(solver, tol); /* default value: 1e-6 */

HYPRE_AMESetPrintLevel(solver, print); /* default value: 1 */

After the above calls, the eigensolver is ready to be constructed. The setup call reads,

HYPRE_AMESetup(solver);

Once the setup has been completed, the eigenproblem can be solved by calling

HYPRE_AMESolve(solver);

The computed eigenvalues and eigenvectors are obtained as follows:

double *eigenvalues;

HYPRE_ParVector *eigenvectors;

HYPRE_AMEGetEigenvalues(solver, &eigenvectors)

HYPRE_AMEGetEigenvectors(solver, &eigenvectors)

Finally, the eigensolver can be destroyed with

HYPRE_AMEDestroy(&solver);

More details on the implementation can be found in the files ampes.h and ampes.c

located in the parcsr_ls directory of hypre .

3. Numerical experiments

In this section we present results from numerical experiments with AME based on
LOBPCG and using AMS with its default parameters, see [11]. The convergence tolerance
in the LOBPCG (the norm of the maximal residual) was set to 10−6. The input matrices
and vectors were constructed in parallel using the unstructured finite element package
aFEM. In our experiments, we tried to keep the problem size per processor approximately
the same (while increasing the number of processors), although the resulting load balance
varied somewhat with the number of processors. The following notation is used in the
tables of this section:

• np denotes the number of processors used,
• N is the total size of the problem,
• nit is the number of LOBPCG iterations,
• tsetup, tsolve and t denote the average times (in seconds) needed for setup, solve

and time to solution (setup and solve), respectively, on a machine with 2.4GHz
Xeon processors.

3.1. Constant coefficients. In this subsection we consider constant coefficient eigen-
problems with α = β = 1. In the first example, the domain is the unit cube meshed
with an unstructured tetrahedral mesh, and we compute the first five eigenpairs. The
initial coarse mesh, before serial or parallel refinement, is shown in Figure 1. The results
listed in Table 1 show that the formulation (1.3) is preferable to the non-singular variant,
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Figure 1. Initial unstructured tetrahedral mesh on the unit cube.
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Figure 2. Time to solution: AME for the first five Maxwell eigenvalues
of the unit cube versus LOBPCG-AMG for the first four eigenvalues of the
Laplacian.

(1.5) not only for its reduced memory requirements, but also for its slightly improved
convergence.

To better assess the quality of the method, we compared AME with LOBPCG based
on the BoomerAMG preconditioner [2] applied to the Laplace eigenproblem discretized
with linear finite elements on the same mesh. Note that the two problem sizes are quite
different. Note also that while we compute five eigenvalues in the left columns, we only
compute four on the right. Those numbers were chosen to align with the eigenvalue
multiplicities, since otherwise the eigenproblem is not well-posed and the convergence
of LOBPCG suffers (which is typical for any iterative block eigensolver). The results
listed in Table 1 and plotted on Figure 2 show that, though not perfectly scalable, the
behavior of AME is qualitatively similar to that of LOBPCG-AMG. The trend observed
in our previous numerical experiments with AMS that the auxiliary space methods for
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AME LOBPCG
np N nit tsetup tsolve N nit tsetup tsolve

using singular matrix (1.3)

1 37,940 18 1.3s 22.8s 5,941 16 0.1s 0.6s
2 105,877 21 3.9s 81.1s 17,478 19 0.2s 2.1s
4 184,820 22 3.7s 74.5s 29,059 19 0.2s 1.9s
8 293,224 23 3.2s 62.3s 43,881 21 0.2s 1.8s

16 697,618 26 4.6s 100s 110,745 25 0.4s 3.2s
32 1,414,371 27 6.4s 143s 225,102 22 0.7s 3.7s
64 2,305,232 29 6.9s 150s 337,105 28 1.0s 5.2s

128 5,040,829 32 9.1s 217s 779,539 37 1.3s 9.0s
256 10,383,148 35 11.0s 267s 1,682,661 36 1.5s 10.0s
512 18,280,864 33 13.7s 304s 2,642,337 33 2.4s 10.3s

1024 38,367,625 41 17.8s 418s 5,845,443 37 4.7s 14.4s

using non-singular matrix (1.5)

1 37,940 18 1.5s 24.8s 5,941 16 0.1s 0.6s
2 105,877 21 4.2s 88.8s 17,478 19 0.2s 2.1s
4 184,820 22 4.1s 82.4s 29,059 19 0.2s 1.9s
8 293,224 23 3.4s 66.7s 43,881 21 0.2s 1.8s

16 697,618 26 5.0s 109s 110,745 25 0.4s 3.2s
32 1,414,371 27 6.8s 157s 225,102 22 0.7s 3.7s
64 2,305,232 29 7.5s 164s 337,105 28 1.0s 5.2s

128 5,040,829 32 9.8s 234s 779,539 37 1.3s 9.0s
256 10,383,148 37 11.9s 300s 1,682,661 36 1.5s 10.0s
512 18,280,864 34 14.9s 334s 2,642,337 33 2.4s 10.3s

1024 38,367,625 42 20.7s 458s 5,845,443 37 4.7s 14.4s

Table 1. Numerical results for the first five eigenvalues of the unit cube
with constant coefficients (α = β = 1). Comparison with LOBPCG for the
first four eigenvalues of the Laplacian.

Maxwell problems inherit the properties of their internal Poisson AMG preconditioner is
confirmed for the AME as well.

We also show in Table 2 results from a similar experiment with the same setup, but we
now compute the first eleven eigenpairs (and the first ten for the Laplacian). This table
contains the largest eigenproblem we have solved, which has a total size of close to half
a billion (eleven times the size N of one vector). To estimate the scalability with respect
to the number of computed eigenpairs, we plot in Figure 3 the ratio of the times from
Tables 1 and 2. For this particular problem, it appears that this ratio stabilizes around
three.

Next, we illustrate the handling of more complicated geometry by computing the first
eight eigenvalues on an unstructured approximation of the unit ball. The results in Table
3 are consistent with those for the unit cube.

The next eigenproblem is posed on the Fichera corner [−1, 1]3 \ [−1, 0]3. This is a
difficult problem, since some of the eigenvectors have singularities at the origin. The
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AME LOBPCG
np N nit tsetup tsolve N nit tsetup tsolve

1 37,940 24 2.2s 69.3s 5,941 25 0.1s 2.5s
2 105,877 27 6.4s 243s 17,478 26 0.2s 7.8s
4 184,820 33 6.0s 245s 29,059 31 0.2s 7.8s
8 293,224 29 5.2s 190s 43,881 27 0.3s 6.2s

16 697,618 40 7.4s 325s 110,745 32 0.4s 10.7s
32 1,414,371 49 10.9s 494s 225,102 36 0.7s 14.0s
64 2,305,232 40 12.0s 450s 337,105 39 1.0s 16.0s

128 5,040,829 50 15.7s 694s 779,539 42 1.3s 22.8s
256 10,383,148 58 18.7s 886s 1,682,661 51 1.6s 28.6s
512 18,280,864 57 23.0s 991s 2,642,337 63 2.3s 38.9s

1024 38,367,625 65 28.5s 1307s 5,845,443 53 4.6s 41.7s

Table 2. Numerical results for the first eleven eigenvalues of the unit
cube with constant coefficients. Comparison with LOBPCG for the first
ten eigenvalues of the Laplacian.
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Figure 3. Ratio of the time to solution for the first eleven and five
Maxwell eigenvalues on the unit cube.

results of the computation of the first eight eigenvalues in Table 4 show somewhat larger
number of iterations compared to the previous two problems, but this is to be expected,
since the eigenvectors in the previous domain are smooth.

The exact eigenvalues of the Fichera corner are not known, but there are several
available benchmarks. In Table 5 we compare our results (on the finest level) with three
previously published such computations.

We conclude the set of constant coefficient experiments by considering two problems
that involve fixed but complicated geometry and come from real-life applications. The
meshes were kindly provided to us by the EMSolve project in Lawrence Livermore Na-
tional Laboratory [4]. The first problem is a simplified version of the Titan target chamber
shown in Figure 4. It has 123, 681 unknowns, and we compute the first eight eigenvalues.
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np N nit tsetup tsolve

1 33,722 21 1.4s 36s
2 94,759 24 4.3s 131s
4 164,735 24 4.2s 122s
8 255,700 28 3.6s 107s

16 610,773 32 5.1s 168s
32 1,226,798 35 8.9s 287s
64 1,990,184 35 15.2s 434s

128 4,351,501 42 15.3s 520s
256 8,948,940 46 19.5s 722s
512 15,701,584 49 21.7s 768s

1024 32,928,989 60 25.5s 990s

Table 3. Initial mesh and numerical results for the first eight eigenvalues
of an approximation of the unit ball.

np N nit tsetup tsolve

1 24,676 34 1.1s 30.0s
2 64,741 40 2.8s 93.8s
4 117,607 38 3.1s 93.6s
8 119,816 44 3.0s 93.5s

16 440,411 54 4.3s 150s
32 886,282 49 6.5s 206s
64 1,512,592 55 9.8s 312s

128 3,245,243 69 10.8s 406s
256 6,635,848 68 14.7s 533s
512 12,013,856 83 18.2s 725s

1024 24,972,012 100 22.2s 964s

Table 4. Initial mesh and numerical results for the first eight eigenvalues
of the Fichera corner.

The second problem, shown in Figure 6 is a prototype of a linear accelerator induction
cell with 593, 773 unknowns, and we computed the first ten eigenvalues. Plots of the
magnitudes of some computed eigenvectors are shown in Figures 5 and 7.

For problems where the problem size is fixed, one is interested in the strong scalability
of the eigensolver, i.e. how much faster the problem can be solved using more processors.
We present such results in Figure 8. The conclusion is that, after the initial parallelization
step, the scalability is quite reasonable. For example, the second problem took more than
half an hour on one processor, while we were able to solve it in less than 3 minutes using
32 processors.

3.2. Variable coefficients. We previously demonstrated that the AMS preconditioner
is capable of handling coefficients having different values in different regions of the domain
(see [11]). Therefore we expect that the new eigensolver will also be robust with respect
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eigenvalue Dauge [3] Bramble et al. [1] Zaglmayr [12] AME
1 3.31381 3.23432 3.21999 3.21599
2 5.88635 5.88267 5.88044 5.88022
3 5.88635 5.88371 5.88046 5.88047
4 10.6945 10.6789 10.6857 10.6855
5 10.6945 10.6832 10.6937 10.6956
6 10.7006 10.6945 10.6937 10.6964
7 12.3345 12.3653 12.3169 12.3128
8 12.3345 12.3723 12.3177 12.3146

Table 5. Fichera corner, eigenvalue benchmark results.

Figure 4. Domain and initial mesh for the Titan target chamber problem.

to jumps in the coefficients. As an illustration, we consider a problem where α = 1, and
β has different values in two regions of the domain. The geometry and the results are
presented in Table 6, cf. [5].

We observe that the for jumps of moderate size, the number of iterations does not
change much. This allowed us to solve an eigenproblem of total size around 190 million
and 4 orders of magnitude jumps in the coefficients in less than 8 minutes.
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Figure 5. Magnitude of the computed electric field for the first eight
eigenvalues of the the Titan target chamber.

Figure 6. Domain and initial mesh for the linear accelerator cell problem.
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Figure 7. Magnitude of the computed electric field for the first twenty
eigenvalues of the linear accelerator cell.
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np N p t
−4 −2 −1 0 1 2 4

α = 1, β ∈ {1, 10p}
1 38,192 21 21 21 15 22 22 20 25s
2 83,278 22 22 22 18 25 26 22 64s
4 161,056 24 24 24 17 25 27 24 73s
8 296,032 25 25 24 21 27 28 25 78s

16 622,030 28 28 26 24 30 33 28 100s
32 1,249,272 32 31 31 25 29 30 27 138s
64 2,330,816 37 36 36 27 43 44 38 198s

128 4,810,140 34 34 33 29 40 41 37 256s
256 9,710,856 34 34 32 26 40 42 37 316s
512 18,497,920 48 47 45 40 53 60 52 475s

1024 37,864,880 48 48 48 34 45 48 42 478s

Table 6. Number of iterations for the computation of the first five eigen-
functions on a cube with α = 1 and β having different values in the shown
regions.




