Bunch Pattern With More Bunches in PEP-II

PDF Version Also Available for Download.

Description

The number of bunches in the PEP-II B-Factory has increased over the years. The luminosity has followed roughly linearly that increase or even faster since we have also lowered the spot size at the interaction point. The recent steps from 939 bunches in June of 2003 to about 1320 in February 2004 (and 1585 in May) should have been followed by a similar rise in luminosity from 6.5 {center_dot} 10{sup 33} l/cm{sup 2} {center_dot} 1/s to 9.1 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s (or even 11 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s in May). This didn't happen so ... continued below

Physical Description

3 pages

Creation Information

Colocho, W.S.; Decker, F.-J.; Novokhatski, A.; Sullivan, M.K.; Wienands, U. & /SLAC May 9, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The number of bunches in the PEP-II B-Factory has increased over the years. The luminosity has followed roughly linearly that increase or even faster since we have also lowered the spot size at the interaction point. The recent steps from 939 bunches in June of 2003 to about 1320 in February 2004 (and 1585 in May) should have been followed by a similar rise in luminosity from 6.5 {center_dot} 10{sup 33} l/cm{sup 2} {center_dot} 1/s to 9.1 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s (or even 11 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s in May). This didn't happen so far and a peak luminosity of ''only'' 7.3 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s (or 9.2 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s in May) was achieved with less bunch currents. By filling the then partially filled by-3 pattern to a completely filled by-3 pattern (1133 bunches) we should get 7.9 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s with scaled currents of 1400 mA (HER) on 1900 mA (LER). We were typically running about 1300 mA on 1900 mA with 15% more bunches in February (and 1550 mA on 2450 mA with 40% more bunches in May). The bunch pattern is typically by-2 with trains of 14 bunches out of 18 (or 67 out of 72). The parasitic beam crossings or electron cloud effects might play a role at about a 5-10% luminosity loss. Also the LER x-tune could be pushed further down to the 1/2 integer in the by-3 pattern. On the other hand, we might not push the beam-beam tune shift as hard as in June of 2003 since we have started trickle injection and therefore might avoid the highest peak luminosity which probably has a higher background.

Physical Description

3 pages

Source

  • Presented at the 9th European Particle Accelerator Conference (EPAC 2004), Lucerne, Switzerland, 5-9 Jul 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-11163
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 890845
  • Archival Resource Key: ark:/67531/metadc883283

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 9, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 8:46 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Colocho, W.S.; Decker, F.-J.; Novokhatski, A.; Sullivan, M.K.; Wienands, U. & /SLAC. Bunch Pattern With More Bunches in PEP-II, article, May 9, 2005; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc883283/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.