Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent Mixing

PDF Version Also Available for Download.

Description

An alternative methodology is described for Large-Eddy Simulation of flows involving shocks, turbulence and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of an ''LES'' fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the ... continued below

Physical Description

PDF-file: 33 pages; size: 0.4 Mbytes

Creation Information

Cook, A W January 8, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An alternative methodology is described for Large-Eddy Simulation of flows involving shocks, turbulence and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of an ''LES'' fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a 10th-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in crisp fashion.

Physical Description

PDF-file: 33 pages; size: 0.4 Mbytes

Source

  • Presented at: International Workshop on the Physics of Compressible Turbulent Mixing, Paris, France, Jul 17 - Jul 21, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-227155
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 902334
  • Archival Resource Key: ark:/67531/metadc883129

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 8, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 8, 2016, 2:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cook, A W. Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent Mixing, article, January 8, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc883129/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.