

Issued by Sandia National Laboratories, operated for the United States Depaltment of Energy by
Sandia Corporation.

NOTICE This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government. nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express,or implied, or ssume any legal Liability or responsibility for the accuracy,
completeness, or usefulness of any information. apparatus. product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any spccific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
US. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reoorts@adonis.osti.eov
Online ordering: htto:l/www.doe.sovlbridze -

Available to the public from
US. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ ntis.fedwor1d.gov
Online order: htto:Nwww.nt is .eovlhe lo lorde~eth~s .aso?onl ine

http://ntis.fedwor1d.gov

SAND2003-8276
Unlimited Release
Printed May 2003

Cvode Component User Guidelines
Kylene Smith, Jaideep Ray and Benjamin Allan
High Performance Computing and Networking

Sandia National Laboratories
Livermore, CA 9455 1

Abstract

This report describes the wrapping of cvode, a serial library of BDF-based solvers for stiff ODE systems, into a

CCA component. It also gives examples of how one loads In the Cvode Component into the CCA framework,

(Sandia's dccafe) as well as how the interface to the component (called CvodePort) is used. The report

concludes with some timing results whereby we empirically show that componentization results in a maximum

2% performance degradation on a single CPU.

The component can be obtained from Jaideep Ray (jairav@ca.sandia.gov, 925-294-3638)

mailto:jairav@ca.sandia.gov

Acknowledgements

We acknowledge the help of Sandia’s ERI program in funding Kylene Smith for the summer

of 2001 when the bulk of the work was done. Thanks are also due to Robert Armstrong for

his help in recruiting Ms. Smith.

Table of Contents

1. Introduction

2. Inputs to the Cvode Component

3. The CvodePort : Description and Implementation

4. Details of the Cvode Component Implementation

a. Example of Usage

5. Performance Testing and Results

Distribution

6

8

1

16

23

26

30

1. Introduction

The Cvode Component is a wrapper around LLNL's Cvode library. The Cvode library

package is provided with the distribution. Find it at

Cvode - Home/tars/Cvode .tar. gz . It is capable of solving systems of stiff

ordinary differential equations. It contains a dense solver, banded solver, diagonal solver,

and SPGMR (Generalized Minimal Residual (GMRES) method with scaling and

preconditioning) solver. This component distribution contains a work horse (Cvode

Component) and several examples of components that use the Cvode Component. The

Cvode Component exports a simple interface known as a CvodePort and also requires the

user to provide an additional port corresponding to the solver type which provides the

right-hand-side function and Jacobian if necessary. For more about Cvode's capabilities

see its user guide.

This project created the Cvode Component. Also provided with the distribution are

multiple examples of components that work as the Driver Component or the Functions

Component in the figure above. A Driver Component is a component that provides the

initializations, configurations and calls. The Functions Component calculates the Y' and

Jacobian. The ports, the smaller rectangles, show the naming conventions used. To use

the Cvode Component, connect the driving component's CvodePort to the

CvodeComponent's THE-CVODE port, and then connect the CvodeComponent's solver

port which matches the matrix data structure of the FunctionsComponent. These

connections are done in the CCAFE - - RC FILE. There are numerous examples in

Cvode - Home/Tests/. For this example the script might look like this:

repository get CvodeComponent

repository get Drivercomponent

repository get FunctionsComponent

create CvodeComponent CvodeSolver

create Drivercomponent Driver

create FunctionsComponent Functions

6

connect Driver CV CvodeSolver THE-CVODE

connect CvodeSolver BAND Functions Band

Dsnsc Cvode
Component

Driver

Bad COmpOnent

THE-CVODE m!i

Functions
Component

Band

figure 1. Schematic layout of an application code using Cvode Component

2. Inputs to the Cvode Component

The Cvode library requires a number of inputs to solve a given problem according to user

specifications. The Cvode Component offers a few ways to configure these inputs:

1. Cvode Component defaults

2. Cvode Component's CONFIG port

3. Property Object

Any combination of these is acceptable.

To use Method 1, do nothing and the Cvode Component will enter its default values

which have been set to the most common settings. This is only valid for some inputs, you

should should refer to Table 1 for more information.

Method 2 is done in the CCAFJ-RC-FILE through the CONFIG port that Cvode

Component provides. The general form is:
configure CvodeComponentName CONFIG InputName value

Example:
repository get CvodeComponent

create CvodeComponent CvodeSolver

configure CvodeSolver CONFIG itol SV

For the input names and appropriate values see Table 1. More information about the inputs

can be found in the Cvode user guide (names were preserved). This port is a very convenient

way to set almost all of the inputs. The few exceptions come when vectors or arrays are

involved. The input "itol" can be set to "SS" or "SV" where the first letter indicates a type

for relative tolerances and the second for absolute tolerances (S= Scalar, V=Vector). If itol=

SV the list of absolute tolerance values should be specified later. Also use another method

for "iopt" and "ropt" array values. For examples of using a script to configure inputs look at

the files in Cvode - Home/Tests/.

Method 3, uses the object that holds all of the inputs called a Propertyobject. It can

be obtained through the CvodePort and queried to set an input. Again, see Table 1 for names

and values of inputs that can be set this way. The general format, after obtaining the property

object from the CvodePort is:
PropertyObjectName->setprop ("InputName", value) ;

Example (assuming you have already obtained the CvodePort and called it Port):
PropObj* PO;

PO = Port->get-PropObj () ;

PO-zsetProp("lmm", "BDF") ;

One exception is that the "iopt" and "ropt" inputs take an index between the name and value,

also they only take effect when "optIn" is set to true.

Example:
PO - > setProp("iopt", "MXSTEP", 1000) ;

There are examples of using the Property Object in Cvode-Home/examples/Driver/

BandDense/src/BD.cxxandCvode~Home/examples/Driver/BandDense/

src/DB. cxx.

Table 1. Cvode Component inputs. Entries marked with ** are used only if optln is set
to TRUE.

Tolerance I Propertyobject
optIn 1 OptionalInputs I bool I FALSE I True, False Script,

Propertyobject

Propertyobject

Propertyobject

mupper Upper Bandwidth int 1 SI Script,

mlower Lower Bandwidth int 1 SI Script,

maxl MaximumKrylov int 0 >=0 script,
dimension Propertyobject

type RIGHT, BOTH Propertyobject

Orthogonalization CLASSICAL-GS Propertyobject

pretype Preconditioner string NONE NONE, LEFT, Script,

gs-type Gram-Schmidt string MODIFIED-GS, Script,

delta Used to get linear double 0.0 >=0 Script,
toleiance Propertyobject

UseDefaultJac Use Cvode’s bool FALSE True, False script

PrintStats Print final stats bool FALSE True, False Script
default Jacobian

Inputs indices
HO Initial step size double Propertyobject

HMAX Max. absolute double infinity Propertyobject
step size

step size
HMIN Min. absolute double 0 Propertyobject

3. The CvodePort : Description and
Implementation
The CvodePort interface is the main way CvodeComponent interacts with its users. The

main Cvode calls have been simplified down to three requiring a fraction of the inputs. The

other inputs have been taken care of through other input methods (see the Input section

above). The function "setup" with its inputs will do required memory allocation and

variable initialization for the ODE problem. Iterate on the "solve" function to integrate the

problem as you wish. Call the "free" function to clean up. The only other functions the

CvodePort interface provides is a derivative function which corresponds to the Cvode

library's CVodeDky should you wish to use it and access methods to retrieve output and set

input. The following is a more detailed description of this implementation of the port. In

examples provided for clarity it is assumed that the port is already obtained and named Port.

class CvodePort: public virtual gov::cca::Port

public:

CvodePort () : gov: : cca : : Port (1
virtual -CvodePort () { }

virtual int setup (double* y, double* abs=NULL,

void* f-data=NULL, void* jac-data=NULL)=O;

virtual int solve (double t-desired)=O;

virtual void free 0 = O ;

virtual int D - k(doub1e t, int k) =O;

virtual PropObj* get-PropObj 0 = 0;

virtual void get-result(double*& data, int& size)=O;

virtual double get-result by index(int index)=O; - -

virtual double get-maxO=O;

virtual double get-t () =O;

virtual void get-dky(double*& data, int& size)=O;

virtual double get-dky-by - index(int index) = " -

1 ;
These methods are documented below:

1) int CvodePort::setup(double* y, double* abs=NULL, void* f-data=NULL, void*
jac-data=NULL) : The setup function is the equivalent of calling CVodeMalloc with all

its inputs and then calling the appropriate CVxxx where xxx is the type of linear solver

that has been specified. For this function you must specify an array of values that are the

initial y values. If using Vector absolute tolerances, you must also provide the array of

those values as the second argument. If using Scalar absolute tolerances and have

already set the value, you do not need the second argument. Unless, you plan to use the

last two then simply pass an explicit NULL. If you have not set the value, pass a pointer

to it. The last two arguments are pointers to data structures you have allocated and filled

up for use in your functions that Cvode will call. They are optional. They are passed

around as void* so if you wish to use them in your functions both the driver and

functions components that interact with CvodeComponent must know the data structure

definition (your responsibility) and you will have to do the casting back to this type in

your function. "jac-data" is the "p-data" argument in the case of the SPGMR solver.

This function returns 0 upon successful completion or -1 for an error. Examples:
a. double y - values[l=(l, 0, O}; Port->setup(y-values) :

b. double atol-vec[l={le-6, le-14, le-8j; Port-

>setup (y-values, atol-vec) ;

c. double atol - scl = le-4; Port->setup(y-values,

&at01 - scl);

12

2) int CvodePort::solve(double t-desired) : The solve function is equivalent to the call

CVode. All configuration inputs have already been established at this point, simply pass

the time to which you want to integrate. The function returns a 0 for success and a

negative number for an error. The error codes are: -1 = CVODE-NO-MEM, -2 =

ILL - INPUT, -3 = TOO-MUCH-WORK, -4 = TOO-MUCH-ACC, -5 =
ERR-FAILURE, -6 = CONV-FAILURE, -7 = SETUP-FAILURE, -8 =
SOLVE-FAILURE, -9 = A setting in the properties object was invalid. Example:

a. double t=.l; Port->solve(t);

3) void CvodePort::free() : The free function tells the Cvode Component that you are
done solving this particular problem and frees up the associated Vector and Cvode

memory. No inputs are needed. If you have set PrintStats to true this will cause those

outputs to be displayed at the standard output. Example: Port - >f ree () ;

4) int CvodePort::D-k(doub1e t, int k) : This is equivalent to CVodeDky. The function

D-k can be used to compute a derivative. Inputs are the time at which you want the

derivative and which derivative you want. The value o f t must be within the range of the

last internal step of the most recent call to setup. The function returns 0 for a success and

a negative value for and error. The corresponding error codes are: -1 = BAD-K, -2 =

BAD-T, -3 = BAD-DKY, -4 = DKY-NO-MEM.. Example:
a. double t=.l; Port->solve(t); Port-> D-k (t, 2) ;

5) PropObj* CvodePort::get-PropObj() : To use Method 3 for input as described above

you need to use this accessor function. This method is the only way to change a setting

after execution has begun. It takes no inputs but will return a pointer to the Property

Object so that you can then use its member functions to get set the properties accordingly.

Example:

13

PropObj * PO; PO = Port->get-PropObj 0 ;

6) void CvodePortxget-result(double*& data, int& size) : This function combines the

functionality of N-VData and N-VLength invoked on the results from the most recent

call to CVode. In order to access the results from a solve step, give get-result a pointer

to a double and an integer. You do not need to allocate any memory for the array, but

you do for the integer. CvodeComponent will take the addresses of these inputs and give

you a copy of the size at the location of the integer and a pointer to the data. This data

will be written over by the next solve step so make sure to use it now or copy it

somewhere if you want to access it later. Example:
a. double t=.l, *Y-data; int Y-size; Port-ssolve(t); Port-

>get - result (Y - data, Y - size) ;

I) double CvodePort::get-result-by-index(int index) : Similar to N-VIth, this function

gives access to just one element of the result. Pass an index between 0 and N-1 (see

Table 1 for the definition of N) the corresponding result from the most recent solve step

is returned. Example:

a. double t=.l, yl; Port->solve(t);

yl = Port->get - result-by-index(1);

8) double CvodePort::get-max() : Sometimes, you may only be interested in the largest

result (in y) from a solve step. This function is like N-VMax, it will return the maximum

value found amongst the results. Example:
a. double t=.l, y-max; Port->solve(tl :

y-max = Port->get-maxO;

9) double CvodePort::get-t() : Use this function to get the exact value of time actually

reached for the most recent solve step. Call with no inputs and the value is returned.

Example:
a. double t - wanted=.l, t - obtained; Port-ssolve(t-wanted);

t - obtained = Port-sget-to;

10) void CvodePort::get-dky(double*& data, int& size) : This function provides similar

functionality to get-result. It takes the same types of arguments but the values come

from a derivative step obtained with D-k in this instance. Pass a pointer to double (no

memory allocation) and integer (allocated). The function gives you a pointer to the data

and the number of elements. Example:
a. double t=.l, *d-data; int d-size; Port->solve(t);

Port->D - k(t, 1); Port->get-dky(d-data, size);

11) double CvodePort::get-dky-by-index(mt index) : Also similar to its counterpart

get-result-by-index, you supply the index between 0 and N-1, the function returns the

corresponding value returned from the latest D-k step. Example:
a. double t=.l, d-1; Port->solve(t); Port->D-k(t, ' I .

d - 1 = Port->get - dky-by-index(1);

4. Details of the Cvode Component

Implementation

This section is dedicated to detailing every inner working of all methods both public and

private for the Cvode Component implementation should anyone need to fully understand

how or why things are being done or need to understand for maintenance purposes. It is

probably not interesting nor necessary for the user to know (Le. the point of CCA). The

source code for the Cvode Component is found in five files split up according to their

purposes. CC . cxx is the main file where general top level stuff is found. Here lies the

constructor, destructor, and setServices (to make it a legal component) . CC-cvode . cxx
has the functions that make the calls to the library. So setup, solve, free and D-k are here.

The CC - access. cxx file has all the methods for the user to access inputs and outputs.

The method to get a Property Object and all return functions for retrieving outputs from

integration are found here. The last file with CvodeComponent members in it is

CC - priv . cxx. The file has all the private methods that do behind the scenes work.

Finally, CC - myf unc . cxx has generic right-hand-side, Jacobian, and Preconditioning

functions which are always passed to the library's functions and then they in turn call the

user's actual functions. This was done because the library requires a static function and it

cuts down on the number of arguments the user needs to deal with since many of the original

arguments on these functions were there only for the default case anyway. The Cvode

Component header file follows this order and we use it as a guide to detailing the functions.

class CvodeComponent: public virtual gov::cca::Cornponent,

public virtual CvodePort

{
public:

CvodeComponent () ;

virtual -CvodeComponentO;

virtual void setServices (gov::cca::Services *svc);

virtual int setup (double' y, double* abs=NULL,
void* f-data=NULL, void* jac-data=NULL);

virtual int solve (double t-desired);
virtual void free 0 ;
virtual int D-k(double t, int k);

virtual PropObj * get-PropObj () ;

virtual void get-result(double*& data, int& size);

virtual double get - result-by-index(int index);
virtual double get-max () ;

virtual double get-t (1 ;

virtual void get-dky(double*& data, int& size, i

virtual double get-dky-by-index(int index);

private :
void init (1 ;
void allocate();

void setupParameters0;
void PrintFinalStats (1 ;
void PrintErrorStatsO;

void set - initial(double* Val);
int set abstol (double* Val); -

IntParameter *N, *maxl, *mupper, *dower;

Doubleparameter *to, *abstol, *reltol, *delta;
BoolParameter *optIn, *PrintStats, *UseDefaultJac;
Stringparameter *errfp, *Linearsolver, *lm, *iter,

*itol, *itask, *pretype, *gs-type;

ConfigurableParameterPort *pp;
gov::cca::Services *psvc;
Denseport* Dense;
Bandport* Band;

DiagPort* Diag;

SpgmrPort* Spgmr;

void *cvode-mem, *MachEnv;
PropObj* PO;

myStruct *my-data-f, *my-data-jac:
double T, ATOL, RTOL;
N-Vector yo, Y, ATOL - V, dky;

bool isrnitialized, unusable, isMall, isAlloc;
int Setupcount;

1 ;
void my - f (int N. double t, N-Vector y, N-Vector ydot,

void* f-data) ;

=.-id my - Dense-Jac(int N, DenseMat J, RhsFn f, void *f-data,
double t, N-Vector y, N-Vector fy,
N - Vector ewt, double h, double uround,
void *jac-data, long int *nfePtr,

N-Vector vtempl, N-Vector vtemp2,
N - Vector vtemp3);

void my - Band-Jac(int N, int mupper, int mlower, BandMat J,
RhsFn f, void *f-data, double t, N-Vector y,

N-Vector fy, N-Vector ewt, double h,
double uround, void *jac-data, long int *nfePtr,
N - Vector vtempl, N - Vector vtemp2, N-Vector vtemp3);

int my - Precond(int N, double t, N-Vector y, N-Vector fy.
bool jok, bool * jcurPtr, double gamma,
N - Vector ewt, double h. double uround,
long int *nfePtr, void *P-data, N-Vector vtempl,

N - Vector vtemp2, N-Vector vtemp3);

1 .

int my - Psolve(int N, double t, N-Vector y, N-Vector fy,

N-Vector vtemp, double gamma, N-Vector ewt,

double delta, long int *nfePtr, N-Vector r,

int lr, void* P-data, N-Vector 2) ;

1) CvodeComponent::CvodeComponent() : The constructor takes no arguments. It

initializes the pointers, zeros the counters, sets the logic variables, and ends by

displaying a line to tell the user it was instantiated properly. The bulk of its work in

the middle is memory allocation. Data structures that will carry the user's f-data and

jac-data as well as information about how to contact the appropriate functions are

allocated. PO stands for Propertyobject. The constructor allocates one such object to

hold all the inputs for Cvode. Initial settings will come from parameters configured

in the script, or default values if nothing is set, but can later be changed by the user.

This can happen up until the setup function is called or after the function free is

called. The rest of the allocations are Parameters. To use the parameters set them

using the script. See the Inputs section or examples for more details. Briefly this is

what they represent. "LinearSolver" is what type of solver to use the default is a

Bandsolver. "N" is the number of equations and is the magic number for how big all

arrays and vectors need to be. This is characterisic of the ODE to be solved must be

set by the parameter or via the Propertyobject for the problem to work. "mupper"

and "mlower" are the upper and lower bandwidths respectively in a BandMatrix.

Their default is 1. "lmm" stands for Linear Multistep Method. It is an input to

CVodeMalloc called in setup. The default value is BDF, the only other valid value is

ADAMS. The Cvode user guide suggests using BDF for stiff problems. "iter," also a

CVodeMalloc input, is the type of internal iteration. Default is NEWTON which the

user guide recommends for stiff problems. FUNCTIONAL is also valid. "itol" is the

type of tolerances for the problem. It has two valid values SV, default, and SS. S

stands for Scalar, V for Vector. The first letter is for they type of relative tolerances

and then second for the type of absolute tolerances. "itask' is an input for CVode and

describes the solvers job. NORMAL, the default, iterates via internal steps until the

time out desired is reached or surpassed. ONE-STEP is also legitimate and results in

only one internal step. "to" is the time initial. It defaults to 0.0 but you may start

19

your integration with any time you need. The next two parameters are the values of

the tolerances. "reltol" is for relative tolerances. It is always a scalar value greater

than or equal to 0. The default is leA-6. "abstol" is for absolute tolerances. The

value can only be set this way if you are using scalar tolerances (i.e. itol has been set

to SS). The value can be anything greater than 0; the default is leA-6. "optIn" needs

to be set to true if you wish to set any of the iopt or ropt values to something other

than their defaults. Its default is false. "errfp" is the name of a file you wish to have

the Cvode library drop its enor messages in. Any messages generated by the

Component will still be sent to the standard output, which is also the default for the

library and this parameter. The next four parameters only apply to a SPGMR solver.

"delta" is the factor that the nonlinear iteration tolerance is multiplied by to get the

linear tolerance value. the default value for the parameter is 0 which invokes Cvode's

default of 0.05. "pretype" is the type of preconditioning. Default is NONE, other

values are RIGHT, LEFT, or BOTH. "gs-type" is the Gram-Schmidt

orthogonalization type. Values are CLASSICAL-GS or MODIFIED-GS there is no

logical default. "maxl" is the maximum Krylov dimension like delta a 0, which the

Component defaults to, invokes Cvode's default of 5. The final two parameters are

for the Component's use. "PrintStats," default = false, will cause final statistics from

iopt and ropt to be printed upon a call to free when set to true. "UseDefaultJac," also

defaulted to false, indicates whether to use Cvode's default Jacobian (for Dense or

Band solvers) or the user defined one. True means use the default.

2) CvodeComponent::-CvodeComponent() : This destructor frees all the memory

from the parameters and the Propertyobject. If there is still memory allocated for the

Vectors or Cvode memory. That is also freed. The logic variables are cleared and

any ports that the Component is holding are released. A final note is displayed to

the user to indicate destruction.

3) CvodeComponent::setServices(gov::cca::Services %VC) : This is a function that all

CCA Component's must define. The first part links the component up with CCA

services and ends if this is not accomplished. This is standard on all components.

The next bunch of commands setup the Component's ability to support parameters.

The last thing this function does is tell the rest of CCA that it may need to use a

Denseport, BandPort, DiagPort, and SpgmrPort; and that it will provide a CvodePort

and ConfigurableParameterPort. It also gives these ports a name which it should be

called for connecting and configuring in the CCAFE - - RC FILE.

4) int CvodeComponent::setup(double* y, double* abs=NULL, void* f-data, void-

jac-data=NULL) : The setup function itself calls for initialization and allocation if

that has not been done already. These functions will be detailed later but they read in

the Parameter inputs and allocate the Y and tolerance vectors respectively. The data

you passed to this function is then filled into the proper vectors with set-initial and

set-abstol. Retrieve a bunch of arguments from the Property Object needed by

CVodeMalloc shortly. The switch statement connects to the appropriate port and tells

the data structure how to find the port. The rest of the Data Structure is filled in with

size, solver type and user data. CVodeMalloc is called next with the appropriate

arguments depending on absolute tolerance type. The next switch statement calls the

appropriate CVxxx function with the necessary arguments. This is also where

CvodeComponent handles whether to use the default Jacobian or not. Unless Cvode

memory is not able to be allocated the function returns a 0.

5) int CvodeComponent::solve(double t-desired) : The solve function returns error

code -9 if the Component has been marked unusable for some reason. This can

happen initialization. Next CVode is called. If it returns a negative value, error

statistics from iopt and ropt are displayed on the standard output. Finally, the value

returned by CVode is returned to the user.

o) void CvodeComponent::freeO : If the "PrintStats" parameter was activated. Final

Statistics from iopt and ropt are printed. Memory allocated with CVodeMalloc,

provided it was successful, is freed. Memory allocated for vectors is freed. The logic

variables are reset and any ports obtained are released.

21

7) int CvodeComponent::D-k(double t, int k) : If the memory to hold derivative

results has not been allocated do that first. Then call the CVodeDky function and

return whatever value it returns (0 for success, negative for an error) to the user. All

of the functions in C C - a c c e s s . c x x and CC - priv. cxx are small and self

explanatory.

8) void my-f (int N, double t, N-Vector y, N-Vector ydot, void* f-data) : This

function provides a static function to CVodeMalloc. It allows us to hide the details of

a N-Vector from the user. This function is an argument to CVodeMalloc and called

within the CVode library in calls to CVodeMalloc and CVode. The data passed here

in f-data is in the form of myStruct filled up in setup. Here it is taken apart so we

have the problem size, type, and user's original f-data. The data from "y" and "ydot"

is transferred into a cca-vec so that it is usable by the users defined "f' provided by

an appropriate solver port. The switch statement sends the problem off with the new

arguments to the appropriate port depending on type and the pointer from the data

structure.

9) void my-Dense-Jac (int N, DenseMat J, RhsFn f, void *f-data, double t,
N-Vector y, N-Vector fy, N-Vector ewt, double h, double uround, void

*jac-data, long int *nfePtr, N-Vector vtempl, N-Vector vtemp2, N-Vector

vtemp3) : This function comes out of the same theory as my-f. Since it is only used

for dense problems, it just disassembles the data structure for jac-data and size,

converts to cca-vec and cca-mat from their CVode forms where appropriate and

passes it on to the user defined Jacobian. The argument list has been simplified to

only include those needed by the user. The others are a part of the prototype only for

the default purpose.

10) void myBandJac (int N, int mupper, int dower, BandMat J, RhsFn f, void

*f-data, double t, N-Vector y, N-Vector fy, N-Vector ewt, double h, double

uround, void *jac-data, long int *nfeF'tr, N-Vector vtempl, NVector vtemp2,

N-Vector vtemp3) : This function is very similar to its Dense counterpart. The

matrices are handled slightly differently. Since BandMatrices are stored in a very

specific way, it is necessary for the user code to continue to handle them in the same

fashion. The Band Port contains the structure. The Jacobian matrix is passed on as a

BandMat-cca which is defined on the BandPort. The vectors are changed as usual to

cca-vec and data is extracted the same way from the data structure.

1 1) int my-Precond(int N, double t, N-Vector y, NVector fy, boo1 jok, boo1 *
jcurPtr, double gamma, N-Vector ewt, double h, double wound, long int

*nfePtr, void *P-data, N-Vector vtempl, N-Vector vtemp2, N-Vector vtemp3)

: This is the equivalent of the Jacobian functions for a SPGMR solver. Vectors are

converted to cca-vec. Data extracted from P-data and control passed onto the user's

function. The return value is equivalent to whatever the user returns.

12) int my-Psolve(mt N, double t, N-Vector y, N-Vector fy, N-Vector vtemp,

double gamma, N-Vector ewt, double delta, long int *nfePtr, N-Vector r, int

Ir, void* P-data, N-Vector z) : This function is also for the SPGMR solver. Data is

extracted, vectors changed, and control passed off to the user's function. Return value

is whatever the user returns.

4.1 Example of Usage
One place the CvodeComponent might be used is to compute Chemistry reactions. Within

this distribution, there is one such example provided. In the directory,

Cvode - Home/examples/Drivers/ChemDriver/ there is a DriverComponent and

in the directory, Cvode - Home/examples/Functions/ChemFunc/ there is a

Functions Component. The problem is run with the script

Cvode - Home/Tests/ChemTest . scr Both components have the usual constructor,

destructor, and setservices functions. The interesting work though is done in the go function

on the DriverComponent and the f-band function of the FunctionsComponent. Here's how

they work.

23

1) void Driver::init() : This function reads in the Drivers parameters, obtains the

CvodePort connection and initializes some data. The Driver provides three

parameters. The first and most important is called DT it should be set to the time you

want to integrate to. Since this is just a test problem the only way to configure this

parameter is use the default (0.1) or set it to your own value in the CCAFE-RC-FILE.

The other parameters deal with how you want to solve the problem. The normal way,

which is fastest and what the program defaults to, is to solve all the cells at once.

Each cells consists of temperature + 8 species (make sure N on the CvodePort is set to

a multiple of 9). This initialization function which will be called by the go function

sets up the problem size, filling in a data structure that will tell f how many variables

and cells the problem contains. The data is then filled into an array of appropriate

size depending on the number of cells (N/9) that you have decided on. If you would

rather solve on a cell by cell basis (N should be 9) you need to configure the other

two parameters. They are "All" which should be set to false. and Num-Cells which

should be set to the number of cells you want. The variables are set up for this case

two except cells is set to one because the Functions side will have no idea that there

are more than one since each problem is separate. The array is still initialized for all

the cells at this time though.

2) int Driver::go() : This function is how the user starts the problem. Depending on

which type of solving you have chosen (cells done all at once or one at a time), this

function calls the appropriate private function after initialization. If you are using the

Cvode Component as part of a larger simulation this type of function could be

provided by any type of port that has the capability to connect to another component

and call it appropriately.

3) void Driver::aU-at-once() : If the parameter "All" is true (default) this function is

invoked. It calls the setup function. It breaks the "DT" up into smaller parts and

loops on solve until it has reached your destination. It retrieves the data and puts it

into the original locations and prints it out on the screen.

24

4) void Driver::one-by-one() : This function is invoked to do things one cell at a time.

This is very poor memory management as it entails numerous CVodeMalloc and Free

calls which tend to be slow and is not recommended. It makes loops around the cells

making its own copy of a cell so that the arrays are the correct size. Then it goes

through the usual calls of setup, solve, free. The data is displayed as it is obtained. If

PrintStats is true you will receive statistics on a cell by cell basis as well.

5) void Functions::f-band (int N, double t, cca-vec* y, cca-vec* ydot, void* f-data)

: This function puts the data into the format needed by the mechanism and calls the

mechanism. It loops over the cells and the mechanism is called on each cell

individually. After the mechanism finishes, this function puts the data into the

proper location of the ydot vector.

6) void Functions::Jac(int N, int mupper, int dower, void* J, void* f-data, double

t, cca-vec* y, cca-vec* ewt, void* jac-data) : This function contains no operations

because we have opted to use Cvode's default Jacobian function by setting

UseDefaultJac to true in the CCAFI-RC-FILE.

7) void Functions::ckwyp (double* P, double* T, double* Y, double* WDOT) :

This function is the real work horse. It computes the chemical reaction for a given

cell that it is sent given the f function.

In the script there are a number of examples of using the script to configure settings for

Cvode as well as the instantiations of the components within the demo and the connections

are made.

25

5. Performance Testing and Results

As a second part of this project, after the development of the new component, we were

testing the performance hit do to CCA. In the tests, the same problem was run on the library

version of Cvode and the component version. A problem consists of solving a system on a

given number of identical cells. The number of cells varies on the x-axis. Figures 3-7

document the results of runs on a Chemistry problem for different time steps. The number of

f evaluations rose from 58 to 920, and the number of Jac evaluations varied between 1 and

22. Figure 2 is from the dense problem supplied with the Cvode library adapted to run on a

Band Port so we could vary the number of cells as before. As the graphs show. For a

problem of at least 100 cells there is no more than a 2% performance hit. This was an

encouraging finding.

Figure 2. Time taken as a function of the sire of the problem.

26

I

I '

t I

Figure 3. Run time as a function of problem size for the
chemistry problem. dt = 1.0. Runs were done with the library
the component form of Cvode. The blue dots show difference
as percentage (plotted on the right Y-axis).

I I

Figure 4. Run times for the chemistry problem, but for
dt = 10.0. The runs were done with the library and component
form of Cvode.

Figure 5. Run times for the chemistry problem with dt = 100.00

I I

Figure 6. Run times for the chemistry problem with dt = 1000.0

28

Figure 7. Run times for the component and library form of
Cvode for the chamistry problem for dt = 0.1.

29

Distribution
Internal Distribution

1 MS 905 1 Jaideep Ray, 896 1
1 MS 9915 Benjamin Allan, 8961
3 MS 9018 Central Technical Files, 8945-1
1 MS 0899 Technical Library, 9616
1 MS 9021 Classification Office, 8511 for Technical Library, MS 0899, 9616

DOE/OSTI via URL

	Abstract
	Acknowledgements
	Table of Contents
	1. Introduction
	2. Inputs to the Cvode Component
	3. The CvodePort : Description and Implementation
	4. Details of the Cvode Component Implementation
	4.1 Example of Usage

	5. Performance Testing and Results
	Distribution

