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Abstract 

The U.S. fusion energy program is focused on research with the potential for 

studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-

based International Thermonuclear Experimental Reactor (ITER) but also continuing 

exploratory work on other plasma confinement concepts. Among the latter is the 

spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using 

electrostatic current drive by coaxial guns have now demonstrated stable spheromaks 

with good heat confinement, if the plasma is maintained near a Taylor state, but the 

anticipated high current amplification by gun injection has not yet been achieved. In 

future experiments and reactors, creating and maintaining a stable spheromak 

configuration at high magnetic field strength may require auxiliary current drive using 

neutral beams or RF power.  Here we show that neutral beam current drive soon to be 

explored on SSPX could yield a compact spheromak reactor with current drive efficiency 

comparable to that of steady state tokamaks. Thus, while more will be learned about 

electrostatic current drive in coming months, results already achieved in SSPX could 

point to a productive parallel development path pursuing auxiliary current drive, 

consistent with plans to install neutral beams on SSPX in the near future. Among possible 

outcomes, spheromak research could also yield pulsed fusion reactors at lower capital 

cost than any fusion concept yet proposed. 

 

1. Introduction 

Experiments utilizing coaxial gun injection in the SSPX facility at LLNL have 

produced small spheromaks with toroidal-like confinement at temperatures up to 500 eV 

[1]. Good confinement occurs inside a boundary called the separatrix that separates 

nominally closed magnetic flux surfaces from an open line flux core connected to the 

gun. For the stable configuration achieved thus far, the magnetic field inside the 

separatrix resembles the relaxed state predicted by Taylor [2]. As clarified by NIMROD 
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simulations [3], after formation of the spheromak, stability is accomplished by reducing 

the gun current in the flux core to be sufficient to provide a stabilizing toroidal field 

inside the separatrix, but at a current below that required to inject magnetic helicity from 

the flux core across the separatrix. Thus the plasma inside the separatrix slowly decays. 

On the other hand, steady auxiliary current drive properly distributed across the profile 

could first build and then maintain the stable Taylor state, or any other stable state, 

indefinitely. Thus auxiliary current drive could be used to create and sustain stable 

spheromaks in steady state reactors, or during the burn phase of a pulsed reactor. 

Three main issues determine the feasibility of spheromak reactors stabilized by 

auxiliary current drive: (1) the efficiency of current drive, (2) the extent to which current 

drive is required to stabilize the edge region near the separatrix, and (3) the current 

required for ignition. Current drive efficiency versus power balance is discussed in 

Sections 2 and 3, and edge stabilization in Section 4. Ignition conditions and spheromak 

scaling are discussed in Section 5. Access requirements to install auxiliary current drive 

are discussed briefly in Section 6, along with comments on potential advantages of 

spheromak reactor designs. Section 7 discusses computer modeling using the NIMROD 

code, including buildup to high magnetic fields, needed also to design a Proof-of-

Principle experiment. Conclusions are presented in Section 8.  

 

2. Current Drive Efficiency 

Cordey [4] has published a formula for the efficiency of neutral beam current 

drive giving the driven current I in ratio to beam power P that fits experimental data such 

as that obtained on the DIIID tokamak at General Atomics. A comparison of neutral 

beam current drive and current drive by Electron Cyclotron Heating on DIIID gave 

comparable efficiencies, whereby 5 MW of neutral beams produced 0.2 MA of current, 

while 1 – 2 MW of ECH produced 0.05MA.  

The results of Cordey’s calculation can be understood from the following simple 

relationship: 

  

I/P = (IBN/IBEB) (1 – 1/ZEFF) = (N/EB) (1 – 1/ZEFF)  (1) 

  



 3 

Here IB and EB are the beam current and energy, and 1/ZEFF represents partial cancellation 

of the ion current by electrons that are born with the beam speed but collide with 

background ions in the plasma with effective charge ZEFF e. The quantity N = (vBτ/2πRM) 

with beam speed vB is the number of times beam ions circulate around the torus before 

slowing down by collisions with electrons, with beam speed vB ∝√EB, major radius RM 

and slowing down time τ ∝ T3/2/n with electron temperature T and density n. Putting in 

numbers gives [4]: 

 

 I/P = 0.5 (T/EB)1/2 (T/n20RM) (1 – 1/ZEFF) MA/MW  (2) 

   

with T and EB in KeV, RM in meters and n in units of 1020 m-3. Based on Fokker-Planck 

calculations of beam ion collisions with the plasma, Cordey found an optimum injection 

energy for deuterium beams, EB = 80T,  giving 0.5 (T/EB)1/2 = 0.06. It is also necessary 

that EB be large enough for beam ions to penetrate the plasma. 

For given reactor parameters n, T and RM, the current drive efficiency is 

determined by (T/EB)1/2. Optimizing EB to penetrate into the plasma while also 

minimizing the power required to produce the beams has led to the development of ≈ 

MeV negative-ion-based beams for ITER, while current drive experiments on DIIID used 

80 KeV positive-ion-based neutral beams, and TFTR used 120 KeV positive-ion-based 

beams. Beam penetration depends on nRM where RM = Aa with aspect ratio A and minor 

radius a, while at a given temperature fusion power ∝ n2RM a2. Thus, for a given power: 

 

 nRM   ∝  √(A/a)       (3) 

 

Thus it may be possible to design a compact spheromak reactor with A = 1 with 

somewhat lower beam energy than is required for ITER with A ≈ 3.  

These comments about compact systems apply also to the spherical tokamak 

concept that is the basis for the NSTX experiment in Princeton, for which neutral beam 

current drive experiments are in progress. The main advantage of spheromaks is the 

absence of the central column required in a spherical tokamak needed to house TF coils 

that produce the toroidal field and, in NSTX, the solenoid producing inductive current 
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drive, though electrostatic current drive by a coaxial gun is also being explored on NSTX.  

As in all tokamaks, it is the toroidal field in NSTX that accounts for its inherent stability.  

The disadvantage of spheromaks is the possibility of residual MHD instability 

that disturbs flux surfaces, even for the “stabilized” case, and additional current drive 

power that would be needed if stabilization is required at the edge in order to maintain a 

Taylor state everywhere. On the other hand, if a spheromak can be made as stable as 

already appears to be the case in SPPX, any reactor designer would opt to omit the 

central column, in order to simplify the divertor and above all to simplify blanket and 

neutron shielding design. 

It may or may not be necessary to stabilize the edge, as discussed in Section 4, 

and in any case the additional current drive power required to stabilize the edge is only a 

factor 2 or so greater than that for the tokamak-like stable case. To see this, we average N 

∝ T3/2 over the temperature profile giving:  

  

N = NS ∫0a (2rdr/a2)|j(x)/ j(0)| (1 - x2)3/2     (4)    

                                                  

Here T ∝ (1 - x2) with x = r/a giving N = NS(1 - x2)]3/2; and we have weighted the integral 

by the current density j being driven by the beam.  For a current density peaked on axis, 

as in a tokamak or the potentially stable spheromak discussed in Section 4, N = NS giving 

Eq. (2) above. For the parabolic temperature profile and constant j, the average <N> ≥ 

2/5NS even if j is roughly uniform as in a Taylor state.  

 

3. Power Balance in Stabilized Spheromak Reactors 

We shall first discuss a spheromak maintained in a stable Taylor state with flat λ 

profile, as in present SSPX experiments, where λ = µoj/B is proportional to the current 

density j. The possibility that stability may allow a λ profile that is “sagging” toward the 

separatrix is discussed in Section 4 and Appendix A. 

To illustrate, we consider the steady state spheromak reactor design of Hagenson 

and Krakowski [5], reviewed in Ref. [6]. Using the numbers in Refs. [5] and [6], we find 

for the Hagenson-Krakowski design: 
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R  =  3 m  (spheromak diameter) 

 

B  =  5 T  (nominal average magnetic field) 

 

I  =  47 MA  (toroidal current) 

 

n20  =  2.26  (averaged density) 

 

τE  =  0.4 s  (energy confinement time) 

 

EMAG  =  1435 MJ (magnetic energy) 

 

PFUSION  =  2775 MW (alpha plus neutron) 

 

PELECTRIC =  1100 MW (at 40% net including blanket) 

 

POHMIC  =  19 MW (inside separatrix) 

 

 

Here τE is derived from the power balance, giving n20τE = 0.9 to be compared with 

n20τE = 1.6 to achieve ignition at T = 20 KeV for uniform density and temperature. 

Neutral beam injection power not included here would reduce the value of n20τE required 

for power balance.  

The ohmic loss POHMIC is that due to plasma current inside the separatrix, 

calculated for a flat λ profile and parabolic electron temperature profile. If the current 

were supplied by electrostatic helicity injection, the required gun power would be of the 

order of 100 MW for the gun efficiency already achieved in SSPX, comparable to the 

neutral beam current drive power projected for ITER. Optimizing the power supply 

should improve the efficiency considerably. Thus electrostatic current drive remains an 

important goal. 
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The power required to drive the current by neutral beams is given by Eq. (2) for 

the “stable” case discussed in Section 4, or this multiplied by 5/2 to maintain a 

“stabilized” Taylor state, as assumed in the Hagenson-Krakowski design. For a nominal 

beam energy EB = 1000 KeV, RM = 0.5R and ZEFF = 2, we obtain for the stable case I/P = 

0.25 MA/MW giving:  

 

PBEAM =    [(47MA)/0.25]  = 188 MW  Stable 

  

 ≈ 5/2 x 188  = 470 MW  Stabilized  

          

While net power would be produced, this range of N corresponds to a large 

recirculation of electric power, mainly because of the inefficiency of non-inductive 

current drive, which is true also for tokamaks. Setting aside beam production efficiency, 

PBEAM/PELECTRIC = 42% to maintain a Taylor state (the Stabilized case) and 17% for the 

most optimistic Stable case. However, this is within a factor of 2 or so of expected 

performance in ITER and steady state tokamak reactors, and at a toroidal current I = 47 

MA that is more than double what is believed necessary to maintain ignition in tokamaks. 

The effect of the actual ignition condition on spheromak reactor scaling is discussed in 

Section 5.  

 

4. Edge Stabilization and the Divertor 

The power balance is most favorable if, instead of the Taylor state with a flat λ 

profile, the plasma remained stable even if the λ profile “sags” to zero near the separatrix 

-- approaching the “Stable,” tokamak-like case of Section 3. 

The existence of a stable case with sagging λ profile has been explored briefly 

with some favorable evidence (see Appendix A), but much more work is required. 

Besides improving the power balance, the existence of a stable state allows the same 

freedom to design a divertor for the spheromak reactor as for the tokamak, but simpler 

due to easy access from the ends of the device (as in mirror machines). By divertor, here 

we refer not only to the flux core but specifically to the return of the bias flux Φ as it 

flows along the wall of the quasi-spherical vacuum chamber. One concern is the 
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thickness Δ of this return flux, referred to as the “scrapeoff” layer. For a spheromak with 

a cylindrical vacuum chamber of radius R and length L = R: 

 

Δ  = (Φ/πR)       (5) 

                               

For the stable case not requiring any current in the flux core or divertor, we are free to 

maintain constant Δ during buildup by programming Φ, much as the PF coils are 

programmed in tokamaks. First efforts to study the effects of programming Φ using the 

NIMROD code, but for a different purpose, are discussed in Ref. [7]. 

For the stabilized case in which it is assumed that a Taylor state must be 

maintained even into the flux core and divertor, additional power is required to maintain 

current on open field lines, using the electrostatic gun. As an illustration, let us assume a 

nominal 30% efficiency for electrostatic injection (by optimizing the power supply 

compared to SSPX) and, in order not to impact the power balance too much, a power of 

50 MW to maintain the required current, thus allowing 15 MW ohmic loss which is 

comparable to POHMIC inside the separatrix. Equating these losses gives [with ηE = ATE
-3/2 

on open lines and an average value <η> = A(T√TE)-1 inside the separatrix]: 

 

jE
2ΔπR2ηE   = jE

2ΔπR2 ATE
-3/2    ≈  π2R3<ηj2>  =  π2R3A(T√TE)-1<j2>  (6)    

                                                                                        

where j ∝ λ is the current density and the geometric factors are the approximate divertor 

and interior volumes. Then:  

 

 Δ/R  ≈ 3π(TE/T)  ≈ 0.1   (7) 

                    

with nominal <j2>/jE
2 = 3 and (T/TE) = 100 (perhaps too high when heating on  open lines 

due to heat transport out of the hot plasma is taken into account). 

Note that, while we found the power balance to be more or less acceptable even 

for the stabilized case, this case does require peaking the beam power near the separatrix 

– either by separate beams or by spreading beam angles appropriately. This also implies a 

large number of beam ion orbits skimming the separatrix, probably satisfactory at steady 
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state.  For the Hagenson-Krakowski steady state design, the minor radius a is about 20 

times the gyroradius rL for a 1 MeV deuterium ion at the weakest field near the outer wall 

(giving a/rL ≥ 20 everywhere); and “banana” drift excursions are comparable to gyroradii 

in spheromaks. We will return to this issue in discussing buildup in Section 7. 

 

5. Ignition Conditions and Stabilized Spheromak Reactor Scaling 

Energy confinement in SSPX appears to be encouraging. The beta achieved in 

SSPX is within a factor of 2 of that for classical heat transport with perfect flux surfaces 

and Te = Ti. 

The most relevant information for extrapolating to future experiments and 

reactors concerns confinement in the hot “core” near the magnetic axis, in order to avoid 

including edge losses that are better ascribed to maintaining the edge magnetic field as 

discussed in Ref. [8] and Section 4. A detailed analysis is given in Ref. [1]. Here we note 

that, to obtain a local power balance giving the observed β ≈ 10% in the core, we require: 

 

τE  =  3/2 β τΩ = 0.008 s     (8)  

 

This result is obtained from ηj2 = 3/2 nT/τE using µoj = λB with λ = 5/R = 10, and also β 

= (2µonT/B2) ≈ 0.1 and τΩ =(µo/2ηλ2) with η = 1.13 x 10 -7 at T = 500eV.   

To extrapolate, we first apply tokamak L-mode scaling using the formula in Ref. 

[9], given by: 

 

τE  = 0.023 (A0.2 )IMA
0.96RM

1.83(10n20)0.4PMW
 – 0.73   (9) 

     

where factors not applicable to spheromaks have been omitted; and A is the ion mass in 

ratio to hydrogen and RM = 0.5R = a, the minor radius. To apply Eq. (9) to SSPX, we take 

for the power the ohmic heating in the core giving P = I2RΩ = 0.15 MW with RΩ = 

(2πaη/πa2) = 10-6 ohm at 500 eV. Using this and SSPX parameters I = 0.4 MA inside the 

separatrix and RM = 0.25, A = 1 and n20 ≈ 1, we obtain τE = 0.007 s, similar to Eq. (8). 

Extrapolating to the parameters of Section 3 for the Hagenson-Krakowski reactor design, 

for the minimum current drive power P = 188 MW we obtain τE = 0.2 s, which is half that 
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required for power balance ignoring heating by the beams. For ITER-98P(y,2) scaling, 

we obtain τE = 1 s. 

That L-mode scaling is only marginally favorable for reactors is not surprising, 

based on similar studies for tokamaks. The actual energy confinement may be better or 

worse, depending on the extent of degradation of confinement due to residual MHD 

turbulence that destroys flux surfaces, thus requiring higher I to reach ignition. The 

greatest leverage in reducing I is by stabilizing resistive MHD modes to the fullest extent 

possible. Resistive MHD instability can now be studied on NIMROD, as discussed in 

Section 7. 

 

6. Access for Auxiliary Current Drive, Reactor Design 

Before discussing NIMROD simulations, we pause to make a few comments 

about access for current drive in reactor designs, and potential advantages of spheromak 

reactors.  We note that, whereas coaxial guns can be mounted at the geometric axis where 

divertor flux must escape in any case, neutral beam injection requires line-of-sight access 

through the vacuum chamber wall, and RF requires space to mount antennas inside the 

machine. For steady state reactors, some thought has already been given to mounting 

neutral beams on compact devices, in conjunction with the Field Reversed Mirror 

concept that motivated the earlier Beta II neutral beam injection experiment at LLNL 

[10].  

Pulsed spheromak reactors not requiring external magnets may offer a unique 

path to lower development cost and lower capital cost [11, 12]. Access for a coaxial gun 

in pulsed spheromak reactors was discussed in Refs. [11] and [12], taking into account 

liquid lithium or FLIBE “blankets” that permit the high power density operation leading 

to lower reactor cost. Successful auxiliary current drive in a pulsed reactor would 

probably require aiming neutral beams through the same points of access -- a hole at each 

end near the axis. The concept in Ref. [12] allowing the liquid blanket to close the hole 

during fusion burn would not apply if injection is required to stabilize the burn. Thus 

pulsed reactors with auxiliary current drive pose formidable design issues, but with a high 

payoff for success. High power density pulsed spheromak reactors could yield reactor 

capital costs as low as $15M for the fusion “nuclear island”[12]. 
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7. Simulating Current Buildup and Stability Using NIMROD 

An important part of the SSPX success story is the validation of the NIMROD 

code to study the effects of resistive MHD modes, now to the point that NIMROD should 

be utilized as the best available tool to model future experiments, as in Ref. [7]. Thus far, 

the greatest discrepancy concerns electron temperatures in the simulations -- about a 

factor 2 below those in SSPX – perhaps due to sensitivity to details for the classical 

electron heat transport along field lines included in NIMROD.  

The simplest way to initiate studies of current drive on NIMROD would be 

adding a specified force or electric field EB(x) with sign chosen to drive current in Ohm’s 

Law. Based on experience in stabilizing MST [7A], fine tuning may not matter so that a 

simple spatial distribution for EB(x) may suffice to show a positive trend, even if 

adjustment is needed to obtain the quietest state and best heat confinement. Ideally, 

besides its toroidal component, EB(x) should contain a poloidal component, which 

requires aiming beams at various angles. In the simulation, this could be accomplished by 

choosing EB(x) to be parallel to the mean field Bo.  

We can see the physical meaning of EB(x) by examining Ohm’s Law for neutral 

beam injection, given by: 

 

- ∂A/∂t  = η{j  -  ji(1 – 1/ ZEFF)}     (10) 

 

and multiplying by λ2/µo gives the current buildup equation: 

  

∂j/∂t  = τ -1{ji (1 – 1/ ZEFF)  -  j}    (11) 

                                                         

where τ = (µo/λ2η) is the decay time for the current. To actually calculate buildup, we 

must solve for ji , which is the current density due to injected beam ions, satisfying: 

 

∂ji /∂t  = τB
-1 jB(x))  -  τS

-1ji      (12) 

                                                                                           

where jB(x) is the current density of injected beam ions (IB = ∫ dS⋅ jB(x)).  Also τS is the 
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slowing down time and τB = (2πRM /vB). An induction term omitted in Eq. (12) has a 

small effect on the Ohm’s Law but a beam source must be added to the heat equation (see 

Appendix B). 

Since τB << τS << τ, we solve Eq. (12) in steady state giving ji = NjB(x) with N =          

(τS /τB) as defined in Section 2. Substituting this into Eq. (11) gives for the buildup 

equation: 

 

∂j/∂t  = τ -1
 { NjB(x)(1 – 1/ ZEFF)  -  j}    (13) 

 

Substituting the steady state ji = NjB(x) into Eq. (10) and treating the last term as an 

electric field gives:  

 

EB(x)  = ηNjB(x)(1 – 1/ ZEFF) 

  ∝ [(√EB/nR)( ZEFF- 1)] jB(x)    (14)  

 

where in the second line we use η ∝ ZEFF T- 3/2  and N ∝ T3/2 as in Section 2.  Substituting 

Eq. (14) into the Ohm’s Law of NIMROD yields a current buildup equation equivalent to 

Eq. (13).  

In steady state, Eq. (13) gives j ∝ NjB(x) ∝ T 3/2jB(x). Hence any distribution of j 

needed to achieve a stable state can be obtained by properly shaping the injected current 

profile jB(x) as noted in the Introduction. Achieving a Taylor state with roughly constant j 

requires jB(x) ∝ T - 3/2. Once the beams take over, if the system is stable T will grow due 

to beam heating and current buildup will continue until heat transport causes T to 

saturate.  

The condition that neutral beam current drive takes over from the gun is                  

NjB(x)(1 – 1/ ZEFF) > j at the temperature and current density of the target. Based on 

performance already achieved in SSPX, suitable target parameters might be β = 5 – 10%, 

T = 200 eV and n20 = 2.26 as in the reactor design of Section 3, or T = 500 eV and n20 = 1 

as in SSPX now. Starting from a few 100 eV and building to 20 KeV, the current and flux 

amplification could be 15-to-50 fold, similar to cases explored in Ref. [7]. 



 12 

A different issue limiting current amplification is the minimum field B required to 

confine beam ions. For 1000 KeV beams, in Section 4 we found a/rL = 20 near the outer 

wall at full field. If the same beams are used to build up the current (as would be 

convenient), the maximum current amplification ≈ 10 in order to maintain a/rL > 1 at the 

beginning of neutral beam injection. Then gun injection must produce I ≈ 5 MA (about 5 

times that in SSPX), which is feasible in a device of reactor size with an efficiently 

designed power supply delivering EMAG = 15 MJ into the flux conserver.  

Finally, for pulsed reactors the crucial issue is the efficiency of recreating the 

magnetic field after each pulse [11].  The buildup efficiency can be increased by 

decreasing the density during buildup followed by fuel injection to initiate the burn 

phase.  

 

8. Conclusions 

Experiments on SSPX have already demonstrated at least one way to achieve a 

stable spheromak at interesting temperatures, though electrostatic current drive giving 

these results has not yet achieved high flux or current amplification. Plans to install 

neutral beams on SSPX are consistent with a different path to achieve high currents, 

using neutral beam auxiliary current drive (demonstrated in the DIIID tokamak) that 

could in principle both build up the magnetic field level and maintain stability. Another 

possibility is RF current drive that also receives attention elsewhere in the fusion 

program.  

The high temperatures achieved in SSPX, together with the rich physics of 

magnetic relaxation being learned in SSPX, is drawing strong support outside LLNL, 

including a recent endorsement that SSPX is the only experiment in its class now ready to 

propose advanced funding to the Proof of Principle (POP) level [14]. 

Besides achieving high temperatures, the other major success in the SSPX 

program is validation of the NIMROD code in modeling phenomena associated with 

resistive MHD instability, now to the point that NIMROD should be used in planning 

future experiments, as it has so successfully been used in interpreting experimental 

results. 
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A two-pronged approach employing NIMROD and experiments now planned for 

SSPX should provide the basis for a POP proposal, and eventually pilot the way toward 

the very promising kind of fusion reactors discussed in this paper.  
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Appendix A 

Stable Spheromaks: Pulsed and Steady State Reactors 

T. K. Fowler 

January 26, 2006 

Work since my seminar with Pearlstein January 20 confirms the general idea that 

stable states of the spheromak must exist, even with a “sagging” λ profile falling to zero 

at the edge -- hence one not requiring gun current to sustain it. 

As noted at the seminar, up to now interest in spheromaks has been motivated by 

the stability of the exact Taylor state and the simplicity of creating spheromaks in the 

Taylor state by gun injection [1]. From the point of view of fusion reactors, this physics 

interest in spheromaks was reinforced by Krakowski’s observation that steady state 

spheromak reactors sustained by gun injection and helicity transport can achieve high 

fusion power gain despite the power required to sustain a Taylor state where the 

temperature drops near the edge [2]. Pulsed reactors maintaining a Taylor state by 

helicity transport from the magnetic axis out to the edge during decay were also shown to 

be attractive [3]. High power gain is NOT consistent with maintaining a gun current on 

open field lines (e.g. to stabilize the spheromak, as in current SSPX high temperature 

shots), if the required current exceeds < 1 % of the toroidal current of the spheromak. 

New evidence has raised questions whether helicity transport, which 

intermittently opens field lines, can be consistent with maintaining good energy 

confinement. Here we note that stable states exist that do not rely on helicity transport, 

and we make a preliminary assessment of their usefulness to fusion as motivation for 

further work.  
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In the absence of helicity transport, these stable states arise naturally as poloidal 

current dies to near-zero at the edge when gun sustainment of the edge ceases, as in the 

decaying state of a pulsed reactor, or a steady state sustained by non-inductive current 

drive. A similar situation arises for RFP’s with inductive drive, again in principle giving 

rise to a stable state with a “sagging” λ profile with λ ≈ 0 at the edge.  

That stable states in RFP’s exist with sagging lambda profiles was demonstrated 

in straight-cylinder approximation by Robinson [4]. Recently Pearlstein has obtained 

similar results for spheromaks, for tearing in cylinder approximation and for ideal modes 

in actual SSPX geometry using Corsica for equilibria and DCON to analyze stability [5]. 

Earlier Jardin found spheromaks stable to ideal MHD modes, even with a significant gap 

between the plasma and the wall, thus allowing room for a divertor to remove impurities 

[6]. Pearlstein finds that DCON predicts stability for all ideal modes in SSPX for both 

peaked and flattened λ profiles, but the maximum allowed gap has not yet been 

calculated. 

Pearlstein finds that stability to tearing occurs only for λ profiles that are 

relatively flat in the interior, with a maximum value λMAX not too much above the lowest 

eigenvalue λo (Taylor state) over most of the volume. In Pearlstein’s calculations using 

equilibria from Corsica fitted to a cylinder for the tearing calculation, for a profile λ = 

λMAX (1 - ψN) with poloidal flux ψ a marginally stable state occurs around N = 5 giving 

λMAX /λo ≈ 1.2, whereas a peaked profile with N = 1 or 2 gives a few tearing modes and 

λMAX /λo ≈ 2.  

That Pearlstein’s tearing results are likely to stand up in an exact treatment in 

toroidal geometry is suggested by a comparison with eigenvalues for kink-like curl-

eigenstates in SSPX, from which actual perturbation solutions can be constructed. 

Eigenvalues are like energy levels, instability being a transition from a symmetric 

equilibrium state to a twisted field of lower energy. For SSPX with flux conserver length-

to-radius L/R = 1, the lowest such eigenvalue λ1 gives λ1/λo ≈ 1.1 (compared to λMAX /λo ≈ 

1.2 above) and the largest possible ratio λ1/λo is almost the same, occurring at L/R = 0.8 

[7].  

We conclude that the aspect ratio of the cylindrical flux conserver in SSPX is 

nearly optimal, and any stable state -- other than an exact Taylor state -- is likely to have 
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a sagging λ profile, flat over most of the volume. A flattish λ profile may be consistent 

with adequate confinement in spheromak reactors, if the edge region is stable as claimed 

above. The flat profile implies grad p = zero in the interior, with heat leak across an edge 

of thickness Δ << a and fusion power production throughout the volume. Reactors with 

these characteristics have been considered in the past, the main consequence of the steep 

edge being a higher toroidal current to reach ignition, by a factor of order (a/Δ)2/3 if 

gyroBohm transport is dominant, as is believed to the be case in tokamaks. While any 

increase in required toroidal current in ITER would be very costly, this is much less 

important for compact spheromaks, perhaps increasing the required current from about 30 

MA in Refs. [2 and 3] to, say, 50 MA for Pearlstein’s N = 5 profile. (A better estimate 

could be made by inserting Pearlstein’s profile into the SPHERE heat transport code in 

straight-cylinder geometry.) 

A greater concern is the tendency for resistive decay to distort the system away 

from the stable state. Left to its own devices, a flattish profile would decay toward a 

peaked profile, perhaps exciting global tearing modes that tend to open field lines 

everywhere in NIMROD simulations to date. This issue can only be explored using 

NIMROD, including heat transport. 

Some form of control may be necessary to maintain the stable state.  Control 

could be applied via non-inductive current drive, in a Steady State reactor, or in a Pulsed 

Reactor with just enough current drive to maintain stability during the burn. The same 

non-inductive drive could become the means for building up a large current in the 

spheromak, as in the earlier Beta II program.  

Since the main concern is avoiding formation of a peaked profile, one possibility 

might be to apply non-inductive current drive toward the edge rather than at the magnetic 

axis. This would create a hollow current profile, probably exciting instability that would 

only fill in the hole up to the level of the flattish stable profile discussed above. Stifling 

the dynamo at the edge might require both poloidal and toroidal current drive, which 

could be accomplished by skewing the direction of the injection of neutral beams. 

One might also consider a compromise with a solid conductor at the geometric 

axis, as in NSTX, but carrying much less current, hence more feasible mechanically. The 

current would be reversed, as in an RFP, with just enough current to partially reverse the 
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field, if that aids stability in the interior. In principle this case is included in Ref. [4], and 

it would not be too difficult to analyze this case in Corsica. In this regard, we note that, in 

one sense, spheromaks are more stable than RFP’s with large aspect ratio, and compact 

RFP’s might be more stable than spheromaks. This hierarchy arises from the strong 

stabilizing effects of compact geometry, expressed through a stabilizing term in δW that 

is proportional to [m2 + n2(r2/R2)] with poloidal and toroidal mode numbers m and n, and 

major radius R. 

In a Pulsed Reactor, it would be desirable to retain to the extent possible the 

simplicity of building up current by gun injection rather than neutral beams [8]. For this 

case, and for SSPX experiments utilizing the gun, all ideas mentioned here require a 

transition from the “downhill-in-λ“ profile produced by the gun to a sagging λ profile.  

Exploring this transition could become an important new goal for SSPX. 

Evidence of instability during such a transition already appears in some experiments and 

NIMROD runs, with a corresponding dump of the heat due to the global nature of the 

modes. Experiments in SSPX together with NIMROD simulations are well-suited to 

study ways of minimizing losses during the transition, the best outcome being the 

creation of a state that remains stable after the gun current (and bias flux?) have been 

reduced to zero. 

Finally, the stability analyses cited above, based on δW for zero pressure, should 

survive at finite pressure. Even high β remains possible regarding ideal modes [3, 6]. 

Finite pressure does introduce new resistive modes [6], which might, however, yield 

beneficial S -scaling for helicity transport as originally hoped [9] (but only if helicity is 

transported faster than heat leaks out). 

Summarizing:  

Stable states for spheromaks exist other than the Taylor state obtained by gun 

injection and helicity transport. Finding ways to access these states and determining their 

utility for fusion reactors requires more modeling on NIMROD. Successful scenarios on 

NIMROD could suggest new paths for SSPX. These new directions, together with a 

continuing effort to build up and sustain current by gun injection, would be 

complementary in exploring the full potential of spheromaks for fusion research. 
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Appendix B.  

Ohm’s Law and the Heat Equation with the Ohkawa Current 

The electric field EB(x) = ηji(1 - 1/ZEFF) in Eq.(14) means a term on the right side 

of Eq. (10), analogous to ηj, neoclassical corrections to the resistance,  or a bootstrap 

current. As for the bootstrap current, which can build up the magnetic field, there is an 

implied coupling to other equations giving the source of energy for the change in field. 

Energy exchanges can be important for the Ohkawa current. 

The Ohm’s Law of Eq. (10) is the sum of electron and ion momentum equations 

weighted to give ∂j/∂t, which is then dropped in comparison with the induction field - 

∂A/∂t. The issue concerns how to calculate ji due to injected ions appearing in Eq. (10), 

for application to a one-fluid code like the spheromak version of NIMROD. In the main 

text, this is done via Eq. (11) which is the parallel ion momentum equation only taking 

into account collisions with electrons. This omits the inductive - ∂A/∂t, which controls 

the energy exchange with the field, as is already implied by Eq. (11). Retaining the 

induction field term gives in quasi-steady state: 
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ji = NjB(x) + (nBe2/mB)τSE| |   = NjB(x) + (nB/nη)E| | (B1) 

                  

Here nB and mB are the beam density and ion mass obtained in constructing the beam ion 

equation contributing to Ohm’s Law and again τS = (mB/νei me) is the ion slowing down 

time.  

Introducing Eq. (B1) into Eq. (10) gives Eq. (13) in the main text aside from a 

small correction to E| | of order (nB/n)(1 - 1/ZEFF). Conversely, if during buildup we 

neglect ηj in Eq. (10) giving E| | = - ηNjB(x)(1 - 1/ZEFF), then substituting this E| | into Eq. 

(B1) gives the steady state solution of Eq. (12) used to derive Eq. (13),  aside from a 

correction of the same order. Thus Eq. (13) correctly describes buildup of current by 

neutral beam injection, the important induction effect appearing in 1/τ ∝ η.  

The energy required for buildup of the field comes form j⋅E, which becomes 

negative for large enough ji for field growth to occur, by the criterion of Section 7. This 

same term negative j⋅E appearing in the heat equation then cools the temperature, 

increases η and stops the growth. The correct formulation must add to j⋅E in the heat 

equation a beam term giving:  

 
j⋅E + jB(x)(EB/πRe) = ηj2 + jB(x){(EB/πRe) - ηNj(1 – 1/ZEFF)} (B2)  

 
This introduces as a secondary condition for buildup {(EB/πRe) - ηNj(1 – 1/ZEFF)} > 0 so 

that T grows, whereby the steady state of Eq. (13) can give higher and higher j as N ∝ 

T3/2 increases. Note that, while the condition of Section 7 depends on T (and through this 

determines a suitable target plasma for buildup), the secondary condition above does not 

depend on T directly since ηN does not, but it does depend on EB (for which the Cordey 

optimum is EB = 80T in steady state). This secondary condition is satisfied for the 

buildup scenario for the Hagenson-Krakowski reactor design, so that the condition of 

Section 7 used to establish the reactor buildup scenario is in fact the dominant one.  


