TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR OUT-OF-TANK DESTRUCTION OF TETRAPHENYLBORATE VIA WET AIR OXIDATION TECHNOLOGY: PHASE I - BENCH SCALE TESTS

PDF Version Also Available for Download.

Description

Tank 48H return to service is critical to the processing of high level waste (HLW) at Savannah River Site (SRS). Liquid Waste Disposition (LWD) management has the goal of returning Tank 48H to routine service by January 2010 or as soon as practical. Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to Tank Farm service. Tank 48H currently contains ... continued below

Creation Information

Adu-Wusu, K March 31, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Tank 48H return to service is critical to the processing of high level waste (HLW) at Savannah River Site (SRS). Liquid Waste Disposition (LWD) management has the goal of returning Tank 48H to routine service by January 2010 or as soon as practical. Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to Tank Farm service. Tank 48H currently contains {approx}240,000 gallons of alkaline slurry with about 2 wt % potassium and cesium tetraphenylborate (KTPB and CsTPB). The main radioactive component in Tank 48H is {sup 137}Cs. The waste also contains {approx}0.15 wt % Monosodium Titanate (MST) which has adsorbed {sup 90}Sr, U, and Pu isotopes. A System Engineering Evaluation of technologies/ideas for the treatment of TPB identified Wet Air Oxidation (WAO) as a leading alternative technology to the baseline aggregation approach. Over 75 technologies/ideas were evaluated overall. Forty-one technologies/ideas passed the initial screening evaluation. The 41 technologies/ideas were then combined to 16 complete solutions for the disposition of TPB and evaluated in detail. Wet Air Oxidation (WAO) is an aqueous phase process in which soluble or suspended waste components are oxidized using molecular oxygen contained in air. The process operates at elevated temperatures and pressures ranging from 150 to 320 C and 7 to 210 atmospheres, respectively. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). The basic flow scheme for a typical WAO system is as follows. The waste solution or slurry is pumped through a high-pressure feed pump. An air stream containing sufficient oxygen to meet the oxygen requirements of the waste stream is injected into the pressurized waste stream, and the air/liquid mixture is preheated to the required reactor inlet temperature. The reactor provides sufficient retention time to allow the oxidation to approach the desired level of organic decomposition. Typical reaction time is about 30-120 minutes. Heat exchangers are routinely employed to recover energy contained in the reactor effluent to preheat the waste feed/air entering the reactor. Auxiliary energy, usually steam, is necessary for startup and can provide trim heat if required. Since the oxidation reactions are exothermic, sufficient energy may be released in the reactor to allow the WAO system to operate without any additional heat input. After cooling, the oxidized reactor effluent passes through a pressure control valve where the pressure is reduced. A separator downstream of the pressure control valve allows the depressurized and cooled vapor to separate from the liquid. Typical industrial WAO applications have a feed flow rate of 1 to 220 gallons per minute (gpm) per train, with a chemical oxygen demand (COD) from 10,000 to 150,000 mg/L (higher CODs with dilution). Note that catalysts, such as homogeneous copper and iron, their heterogeneous counterparts, or precious metals can be used to enhance the effectiveness (i.e., to lower temperature, pressure, and residence time as well as increase oxidation efficiencies) of the WAO reaction if deemed necessary.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2006-00114
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/890215 | External Link
  • Office of Scientific & Technical Information Report Number: 890215
  • Archival Resource Key: ark:/67531/metadc883089

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 31, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 2, 2016, 4 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Adu-Wusu, K. TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR OUT-OF-TANK DESTRUCTION OF TETRAPHENYLBORATE VIA WET AIR OXIDATION TECHNOLOGY: PHASE I - BENCH SCALE TESTS, report, March 31, 2006; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc883089/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.