A thermal resistance method for computing surface heat flow and subsurface temperatures with application to the Uinta Basin of northeastern Utah

PDF Version Also Available for Download.

Description

The thermal resistance method has been modified to test the utility of oil and gas well bottom-hole temperature data in determining heat flow and subsurface temperature patterns. Thermal resistance, defined as the quotient of a depth parameter '{Delta}{sub z}' and thermal conductivity 'k'', governs subsurface temperatures as follows: T{sub B} = T{sub 0} + q{sub 0} B {summation} z=0 ({Delta}z/k){sub i} where T{sub B} is the temperature at depth z = B, T{sub 0} is the surface temperature, q{sub 0} is surface heat flow and the thermal resistance ({Delta}z/k) is summed for all lithological units between the surface and depth ... continued below

Creation Information

Chapman, David S. & Keho, Tim September 1, 1982.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The thermal resistance method has been modified to test the utility of oil and gas well bottom-hole temperature data in determining heat flow and subsurface temperature patterns. Thermal resistance, defined as the quotient of a depth parameter '{Delta}{sub z}' and thermal conductivity 'k'', governs subsurface temperatures as follows: T{sub B} = T{sub 0} + q{sub 0} B {summation} z=0 ({Delta}z/k){sub i} where T{sub B} is the temperature at depth z = B, T{sub 0} is the surface temperature, q{sub 0} is surface heat flow and the thermal resistance ({Delta}z/k) is summed for all lithological units between the surface and depth B. In practice, bottom-hole temperatures are combined with a measured or estimated thermal conductivity profile to determine the surface heat flow q{sub 0}, which in turn is used for all consequent subsurface temperature computations. The method has been tested in the Tertiary Uinta Basin of northeastern Utah, a region of intermediate geologic complexity (structurally simple yet lithologically complex) where numerous oil and gas well data are available. Thermal conductivity values, determined for 852 samples from five representative wells varying in depth from 670 to 5180 meters, were used to assign average conductivities to geologic formations and to investigate the effect of facies changes on intra-formation conductivities. In situ conductivities were corrected for porosity and temperature effects. Formation thicknesses needed for the thermal resistance summation were obtained by utilizing approximately 2000 wells in the WEXPRO Petroleum Information file, the computations being expedited by describing all formation contacts as fourth order polynomial surfaces. Bottom-hole temperatures were used from 97 selected wells where multiple well logs permitted correcting temperatures for drilling effects.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ID-12079-79
  • Grant Number: DE-AC07-80ID12079
  • DOI: 10.2172/893698 | External Link
  • Office of Scientific & Technical Information Report Number: 893698
  • Archival Resource Key: ark:/67531/metadc883071

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1982

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 7, 2016, 11:07 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chapman, David S. & Keho, Tim. A thermal resistance method for computing surface heat flow and subsurface temperatures with application to the Uinta Basin of northeastern Utah, report, September 1, 1982; United States. (digital.library.unt.edu/ark:/67531/metadc883071/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.