Image Correlation Applied to Single Crystal Plasticity Experiments and Comparison to Strain Gage Data

PDF Version Also Available for Download.

Description

Full-field optical techniques are becoming increasingly popular for measuring the deformation of materials, especially in materials that exhibit non-uniform behavior. While there are many full-field techniques available (e.g. moire interferometry, electronic speckle pattern interferometry (ESPI), holography, and image correlation [1]), for our study of the deformation of single crystals, the image correlation technique was chosen for its insensitivity to vibrations and ability to measure large strains. While the theory and development of the algorithms for image correlation have been presented elsewhere [2,3] a comparative study to a conventional strain measurement device, such as a strain gage rosette, is desired to ... continued below

Physical Description

PDF-file: 12 pages; size: 1 Mbytes

Creation Information

LeBlanc, M M; Florando, J N; Lassila, D H; Schmidt, T & Tyson II, J June 29, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Full-field optical techniques are becoming increasingly popular for measuring the deformation of materials, especially in materials that exhibit non-uniform behavior. While there are many full-field techniques available (e.g. moire interferometry, electronic speckle pattern interferometry (ESPI), holography, and image correlation [1]), for our study of the deformation of single crystals, the image correlation technique was chosen for its insensitivity to vibrations and ability to measure large strains. While the theory and development of the algorithms for image correlation have been presented elsewhere [2,3] a comparative study to a conventional strain measurement device, such as a strain gage rosette, is desired to test the robustness and accuracy of the technique. The 6 Degrees of Freedom (6DOF) experiment, which was specifically designed to validate dislocation dynamics (DD) simulations [4], is ideally suited to compare the two methods. This experiment is different from previous experiments on single crystals in that it allows the crystal to deform essentially unconstrained, in both the elastic and plastic regimes, by allowing the bottom of the sample to move as the sample is being compressed. This unconstrained motion prevents the internal crystal planes from rotating during the deformation as typically seen in the pioneering work of Schmid [5] and Taylor [6]. In the early development of the 6DOF apparatus, stacked strain gage rosettes were used to provide the strain data [7]. While very accurate at small strains, strain gages provide an averaged measurement over a small area and cannot be used to measure the inhomogeneous plastic strains that typically occur during the 6DOF experiment. An image correlation technique can measure the full-field in-plane and out-of-plane deformation that occurs in single crystals, and a comparison to the strain gage data at small strains can test the accuracy of the method.

Physical Description

PDF-file: 12 pages; size: 1 Mbytes

Source

  • Journal Name: Experimental Techniques, vol. 30, no. 4, July 31, 2006, pp. 33-37

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-213561
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 891719
  • Archival Resource Key: ark:/67531/metadc883014

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 29, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 29, 2016, 2:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

LeBlanc, M M; Florando, J N; Lassila, D H; Schmidt, T & Tyson II, J. Image Correlation Applied to Single Crystal Plasticity Experiments and Comparison to Strain Gage Data, article, June 29, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc883014/: accessed May 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.