Characterization of the Structure of Cation-DopedBacteriogenic Uranium Oxides using X-Ray Diffraction

PDF Version Also Available for Download.

Description

Remediation of uranium contamination in subsurface groundwater has become imperative as previous research and manufacturing involving radionuclides has led to contamination of groundwater sources. A possible in situ solution for sequestration of uranium is a bacterial process in which Shewanella oneidensis MR-1 reduces the soluble (and thus mobile) U(VI) oxidation state into the less mobile UO{sub 2} crystalline phase. However, the long term stability of the UO2 compound must be studied as oxidative conditions could return it back into the U(VI) state. Incorporation of other cations into the structure during manufacture of the UO{sub 2} could alter the dissolution behavior. ... continued below

Physical Description

18 pages

Creation Information

Stahlman, Jonathan M. & /SLAC, /Carnegie Mellon U. August 29, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Remediation of uranium contamination in subsurface groundwater has become imperative as previous research and manufacturing involving radionuclides has led to contamination of groundwater sources. A possible in situ solution for sequestration of uranium is a bacterial process in which Shewanella oneidensis MR-1 reduces the soluble (and thus mobile) U(VI) oxidation state into the less mobile UO{sub 2} crystalline phase. However, the long term stability of the UO2 compound must be studied as oxidative conditions could return it back into the U(VI) state. Incorporation of other cations into the structure during manufacture of the UO{sub 2} could alter the dissolution behavior. A wide angle x-ray scattering (WAXS) experiment was performed to determine whether or not calcium, manganese, and magnesium are incorporated into this structure. If so, the substituted atoms would cause a contraction or expansion in the lattice because of their differing size, causing the lattice constant to be altered. After several stages of data reduction, the WAXS diffraction peaks were fit using the Le Bail fit method in order to determine the lattice constant. Initial results suggest that there may be incorporation of manganese into the UO{sub 2} structure due to a .03 Angstrom decrease in lattice constant, but more data is needed to confirm this. The calcium and magnesium doped samples showed little to no change in the lattice constant, indicating no significant incorporation into the structure. Most importantly, this experiment revealed an artifact of the cleaning process used to remove the bacteria from the sample. It appears the NaOH used to clean the samples is contracting the lattice also by {approx} .03 Angstroms, but no physical explanation is offered as of yet.

Physical Description

18 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-TN-07-017
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/915380 | External Link
  • Office of Scientific & Technical Information Report Number: 915380
  • Archival Resource Key: ark:/67531/metadc882997

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 29, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 22, 2016, 10:20 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stahlman, Jonathan M. & /SLAC, /Carnegie Mellon U. Characterization of the Structure of Cation-DopedBacteriogenic Uranium Oxides using X-Ray Diffraction, report, August 29, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc882997/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.