Application of atomic magnetometry in magnetic particledetection

PDF Version Also Available for Download.

Description

We demonstrate the detection of magnetic particles carriedby water in a continuous flow using an atomic magnetic gradiometer.Studies on three types of magnetic particles are presented: a singlecobalt particle (diameter ~;150 mum, multi-domain), a suspension ofsuperparamagnetic magnetite particles (diameter ~;1 mum), andferromagnetic cobalt nanoparticles (diameter ~;10 nm, 120 kA/mmagnetization). Estimated detection limits are 20 mum diameter for asingle cobalt particle at a water flow rate 30 ml/min, 5x103 magnetiteparticles at 160 ml/min, and 50 pl for the specific ferromagnetic fluidat 130 ml/min. Possible applications of our method arediscussed.

Creation Information

Xu, Shoujun; Donaldson, Marcus H.; Pines, Alexander; Rochester,Simon M.; Budker, Dmitry & Yashchuk, Valeriy V. September 17, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We demonstrate the detection of magnetic particles carriedby water in a continuous flow using an atomic magnetic gradiometer.Studies on three types of magnetic particles are presented: a singlecobalt particle (diameter ~;150 mum, multi-domain), a suspension ofsuperparamagnetic magnetite particles (diameter ~;1 mum), andferromagnetic cobalt nanoparticles (diameter ~;10 nm, 120 kA/mmagnetization). Estimated detection limits are 20 mum diameter for asingle cobalt particle at a water flow rate 30 ml/min, 5x103 magnetiteparticles at 160 ml/min, and 50 pl for the specific ferromagnetic fluidat 130 ml/min. Possible applications of our method arediscussed.

Source

  • Journal Name: Applied Physics Letters; Journal Volume: 89; Journal Issue: 22; Related Information: Journal Publication Date: 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--61614
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1063/1.2400077 | External Link
  • Office of Scientific & Technical Information Report Number: 918661
  • Archival Resource Key: ark:/67531/metadc882952

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 17, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Xu, Shoujun; Donaldson, Marcus H.; Pines, Alexander; Rochester,Simon M.; Budker, Dmitry & Yashchuk, Valeriy V. Application of atomic magnetometry in magnetic particledetection, article, September 17, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc882952/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.