Optical transition radiation interferometry for A0 photoinjector

PDF Version Also Available for Download.

Description

A charged particle passing through the boundary of two medias with different permittivity values generates Transition Radiation (TR), [1]. The TR is caused by a variation of the particle electric field with variation of the permittivity. The TR for relativistic particles has a wide spectrum with a significant portion in the optical range. The Optical Transition Radiation (OTR) is widely used for a beam profile monitoring and measurements of a beam size. Moreover, OTR can be used to characterize the energy, energy spread and transverse angles in the beam by employing the interference of the OTR from two thin films ... continued below

Physical Description

17 pages

Creation Information

Kazakevich, G.; /Novosibirsk, IYF; Edwards, H.; Fliller, R.; Lebedev, V.; Nagaitsev, S. et al. March 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A charged particle passing through the boundary of two medias with different permittivity values generates Transition Radiation (TR), [1]. The TR is caused by a variation of the particle electric field with variation of the permittivity. The TR for relativistic particles has a wide spectrum with a significant portion in the optical range. The Optical Transition Radiation (OTR) is widely used for a beam profile monitoring and measurements of a beam size. Moreover, OTR can be used to characterize the energy, energy spread and transverse angles in the beam by employing the interference of the OTR from two thin films [2] inserted in the beam trajectory. This method has been applied in number of works [3-5] demonstrating high results and good coincidence in measurements and calculations. In this paper we present and discuss in details a simulation of the interference pattern in several experimental setups. We consider the main optical effects, for diagnostics for the beam properties at A0 Photoinjector and the ILC module test area (NML) in a wide range of electron beam energy. In this paper, we first derive the OTR intensity formula for a single film at 90 degrees to the beam, then for two films at normal incidence, and finally with films at 45 degree incidence to the beam. The last section illustrates application with beam parameters like those at the A0 Photoinjector (electron energy 15 MeV).

Physical Description

17 pages

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-PUB-07-055-AD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 901115
  • Archival Resource Key: ark:/67531/metadc882924

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 6:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kazakevich, G.; /Novosibirsk, IYF; Edwards, H.; Fliller, R.; Lebedev, V.; Nagaitsev, S. et al. Optical transition radiation interferometry for A0 photoinjector, article, March 1, 2007; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc882924/: accessed January 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.