Materials for Geothermal Production

PDF Version Also Available for Download.

Description

Advances in the development of new materials continue to be made in the Geothermal Materials Project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved. ... continued below

Physical Description

97-103

Creation Information

Kukacka, Lawrence E. March 24, 1992.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Advances in the development of new materials continue to be made in the Geothermal Materials Project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved. Laboratory testing of BNL-developed phosphate modified calcium aluminate cements confirmed their hydrolytic stability in 300 C brine and their resistance to chemical attack by CO{sub 2}. Specimens were found to be >20 times more resistant to carbonation than Class H cement and twice as resistant as unmodified calcium aluminate cements. Testing of thermally conductive polymer cements as potential corrosion resistant liner materials for use in heat exchanger applications was continued. Field test were conducted in flowing hypersaline brine and the results indicated scale deposition rates lower than those on a high alloy steel. Additional tests for bottoming cycle heat exchange use are planned for FY 1992. Progress was also made with chemical systems for lost circulation control. If materials placement is to be performed by pumping through an open drillpipe or through a drillable straddle packer, a bentonite-ammonium polyphosphate-borax-magnesium oxide formulation, containing fibers or particulates when large fissures are encountered, can be used. This system was ready for demonstration in FY 1991, but a suitable test site did not become available. Optimization of this and three other formulations for use with other Sandia National Laboratories developed placement technology is being continued. Work to develop high temperature hydrolytically stable chemical coupling systems needed to bond elastomers to metal reinforcement commenced. Until these become available, it will not be possible to produce many important tools needed to reduce well-drilling costs. To date very promising results have been achieved using high melting point (> 280{sup o}) polyaromatic type adhesives. Compared to the best commercially available coupling systems which will undergo complete disbondment from stainless steel upon exposure for 1 day to brine at 200 C, copolymers made from the polyaromatic materials show no disbondment or loss of bond strength after 5 weeks. Additional work is required to improve the magnitude of the bond and to improve the thixotropic behavior of the adhesives in the liquid state. Cost-shared efforts with operators at the Geysers to evaluate the use of polymer concrete and polymeric liners to mitigate corrosion were continued. Small lined casing sections and full size collection piping tees are being tested. The results to date have been promising and larger-scale tests are planned.

Physical Description

97-103

Source

  • Proceedings, Geothermal Energy and the Utility Market - The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market; San Francisco, CA, March 24-26, 1992, Geothermal Program Review X

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-920378--17
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 891895
  • Archival Resource Key: ark:/67531/metadc882921

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 24, 1992

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 29, 2016, 7:27 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kukacka, Lawrence E. Materials for Geothermal Production, article, March 24, 1992; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc882921/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.