Synthetic Event Reconstruction Experiments for Defining Sensor Network Characteristics

PDF Version Also Available for Download.

Description

An event reconstruction technology system has been designed and implemented at Lawrence Livermore National Laboratory (LLNL). This system integrates sensor observations, which may be sparse and/or conflicting, with transport and dispersion models via Bayesian stochastic sampling methodologies to characterize the sources of atmospheric releases of hazardous materials. We demonstrate the application of this event reconstruction technology system to designing sensor networks for detecting and responding to atmospheric releases of hazardous materials. The quantitative measure of the reduction in uncertainty, or benefit of a given network, can be utilized by policy makers to determine the cost/benefit of certain networks. Herein we ... continued below

Physical Description

PDF-file: 34 pages; size: 0.4 Mbytes

Creation Information

Lundquist, J K; Kosovic, B & Belles, R December 15, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An event reconstruction technology system has been designed and implemented at Lawrence Livermore National Laboratory (LLNL). This system integrates sensor observations, which may be sparse and/or conflicting, with transport and dispersion models via Bayesian stochastic sampling methodologies to characterize the sources of atmospheric releases of hazardous materials. We demonstrate the application of this event reconstruction technology system to designing sensor networks for detecting and responding to atmospheric releases of hazardous materials. The quantitative measure of the reduction in uncertainty, or benefit of a given network, can be utilized by policy makers to determine the cost/benefit of certain networks. Herein we present two numerical experiments demonstrating the utility of the event reconstruction methodology for sensor network design. In the first set of experiments, only the time resolution of the sensors varies between three candidate networks. The most ''expensive'' sensor network offers few advantages over the moderately-priced network for reconstructing the release examined here. The second set of experiments explores the significance of the sensors detection limit, which can have a significant impact on sensor cost. In this experiment, the expensive network can most clearly define the source location and source release rate. The other networks provide data insufficient for distinguishing between two possible clusters of source locations. When the reconstructions from all networks are aggregated into a composite plume, a decision-maker can distinguish the utility of the expensive sensor network.

Physical Description

PDF-file: 34 pages; size: 0.4 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-217762
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/894010 | External Link
  • Office of Scientific & Technical Information Report Number: 894010
  • Archival Resource Key: ark:/67531/metadc882902

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 15, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 8, 2016, 11:22 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lundquist, J K; Kosovic, B & Belles, R. Synthetic Event Reconstruction Experiments for Defining Sensor Network Characteristics, report, December 15, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc882902/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.