Development and validation of bonded composite doubler repairs for commercial aircraft.

PDF Version Also Available for Download.

Description

A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it ... continued below

Physical Description

220 p.

Creation Information

Roach, Dennis Patrick & Rackow, Kirk A. July 1, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC), Boeing, and Federal Express completed a pilot program to validate and introduce composite doubler repair technology to the U.S. commercial aircraft industry. This project focused on repair of DC-10 fuselage structure and its primary goal was to demonstrate routine use of this repair technology using niche applications that streamline the design-to-installation process. As composite doubler repairs gradually appear in the commercial aircraft arena, successful flight operation data is being accumulated. These commercial aircraft repairs are not only demonstrating the engineering and economic advantages of composite doubler technology but they are also establishing the ability of commercial maintenance depots to safely adopt this repair technique. This report presents the array of engineering activities that were completed in order to make this technology available for widespread commercial aircraft use. Focused laboratory testing was conducted to compliment the field data and to address specific issues regarding damage tolerance and flaw growth in composite doubler repairs. Fatigue and strength tests were performed on a simulated wing repair using a substandard design and a flawed installation. In addition, the new Sol-Gel surface preparation technique was evaluated. Fatigue coupon tests produced Sol-Gel results that could be compared with a large performance database from conventional, riveted repairs. It was demonstrated that not only can composite doublers perform well in severe off-design conditions (low doubler stiffness and presence of defects in doubler installation) but that the Sol-Gel surface preparation technique is easier and quicker to carry out while still producing optimum bonding properties. Nondestructive inspection (NDI) methods were developed so that the potential for disbond and delamination growth could be monitored and crack growth mitigation could be quantified. The NDI methods were validated using full-scale test articles and the FedEx aircraft installations. It was demonstrated that specialized NDI techniques can detect flaws in composite doubler installations before they reach critical size. Probability of Detection studies were integrated into the FedEx training in order to quantify the ability of aircraft maintenance depots to properly monitor these repairs. In addition, Boeing Structural Repair and Nondestructive Testing Manuals were modified to include composite doubler repair and inspection procedures. This report presents the results from the FedEx Pilot Program that involved installation and surveillance of numerous repairs on operating aircraft. Results from critical NDI evaluations are reported in light of damage tolerance assessments for bonded composite doublers. This work has produced significant interest from airlines and aircraft manufacturers. The successful Pilot Program produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. This report discusses both the laboratory data and Pilot Program results from repair installations on operating aircraft to introduce composite doubler repairs into mainstream commercial aircraft use.

Physical Description

220 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2007-4088
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/912655 | External Link
  • Office of Scientific & Technical Information Report Number: 912655
  • Archival Resource Key: ark:/67531/metadc882901

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 7, 2016, 10:42 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Roach, Dennis Patrick & Rackow, Kirk A. Development and validation of bonded composite doubler repairs for commercial aircraft., report, July 1, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc882901/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.