Nanobiogeochemistry of Microbe/Mineral Interactions: A Force Microscopy and Bioinformatics Approach

PDF Version Also Available for Download.

Description

Iron-reducing microorganisms, like Shewanella oneidensis, have received a great deal of attention in the literature because of their ability to couple the oxidation of organic contaminants to the reduction of Fe(III) in minerals. The mechanism by which this microorganism transfers electrons to Fe(III) in a mineral’s structure is unknown. We used atomic force microscopy (AFM) to measure forces at the interface between an iron oxide mineral and a living cell of S. oneidensis. A unique force-signature was attributed to outer membrane proteins synthesized for the specific purpose of forming a bond with the surface of an iron oxide. To confirm ... continued below

Physical Description

2.7Mb

Creation Information

Lower, Steven, K. October 11, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Iron-reducing microorganisms, like Shewanella oneidensis, have received a great deal of attention in the literature because of their ability to couple the oxidation of organic contaminants to the reduction of Fe(III) in minerals. The mechanism by which this microorganism transfers electrons to Fe(III) in a mineral’s structure is unknown. We used atomic force microscopy (AFM) to measure forces at the interface between an iron oxide mineral and a living cell of S. oneidensis. A unique force-signature was attributed to outer membrane proteins synthesized for the specific purpose of forming a bond with the surface of an iron oxide. To confirm this hypothesis, we used AFM to measure forces between an iron oxide mineral and each of two outer membrane cytochromes purified from S. oneidensis. There is a strong correlation between the whole cell and pure protein force spectra suggesting that these two cytochromes play a prominent role in the terminal electron transfer to Fe(III) in minerals.

Physical Description

2.7Mb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/15590-1
  • Grant Number: FG02-04ER15590
  • DOI: 10.2172/893095 | External Link
  • Office of Scientific & Technical Information Report Number: 893095
  • Archival Resource Key: ark:/67531/metadc882869

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 11, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 4, 2016, 2:41 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lower, Steven, K. Nanobiogeochemistry of Microbe/Mineral Interactions: A Force Microscopy and Bioinformatics Approach, report, October 11, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc882869/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.