A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS)

PDF Version Also Available for Download.

Description

This project serves to fill information gap through the development of a novel surface-enhanced Raman scattering (SERS) spectroscopy to selectively and sensitively monitor and characterize the chemical speciation of radionuclides at trace levels. The SERS technique permits both of these measurements to be made simultaneously, and results in significant improvement over current methods in reducing time of analysis, cost, and sample manipulation. Our overall goal is (a) to develop a scientific basis for this new methodology to detect radionuclides via SERS and (b) to rationally synthesize and evaluate novel sol-gel based SERS substrates tailored to sensitively detect and characterize inorganic ... continued below

Creation Information

Sheng, Dai & Gu, B. September 28, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This project serves to fill information gap through the development of a novel surface-enhanced Raman scattering (SERS) spectroscopy to selectively and sensitively monitor and characterize the chemical speciation of radionuclides at trace levels. The SERS technique permits both of these measurements to be made simultaneously, and results in significant improvement over current methods in reducing time of analysis, cost, and sample manipulation. Our overall goal is (a) to develop a scientific basis for this new methodology to detect radionuclides via SERS and (b) to rationally synthesize and evaluate novel sol-gel based SERS substrates tailored to sensitively detect and characterize inorganic radionuclides such as TcO4 -, actinyl ions (e.g. UO2 2+, NpO2 +, and PuO2 2+) and other chemical compounds of interest.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-81927-2005
  • Grant Number: None
  • DOI: 10.2172/893264 | External Link
  • Office of Scientific & Technical Information Report Number: 893264
  • Archival Resource Key: ark:/67531/metadc882864

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 28, 2005

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 4, 2016, 7:18 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sheng, Dai & Gu, B. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS), report, September 28, 2005; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc882864/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.