Current Capabilities of the Fuel Performance Modeling Code PARFUME

PDF Version Also Available for Download.

Description

The success of gas reactors depends upon the safety and quality of the coated particle fuel. A fuel performance modeling code (called PARFUME), which simulates the mechanical and physico-chemical behavior of fuel particles during irradiation, is under development at the Idaho National Engineering and Environmental Laboratory. Among current capabilities in the code are: 1) various options for calculating CO production and fission product gas release, 2) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or a prismatic block core, as well as through the layers of each analyzed particle, 3) simulation of multi-dimensional particle ... continued below

Creation Information

Miller, G. K.; Petti, D. A.; Maki, J. T. & Knudson, D. L. September 1, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The success of gas reactors depends upon the safety and quality of the coated particle fuel. A fuel performance modeling code (called PARFUME), which simulates the mechanical and physico-chemical behavior of fuel particles during irradiation, is under development at the Idaho National Engineering and Environmental Laboratory. Among current capabilities in the code are: 1) various options for calculating CO production and fission product gas release, 2) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or a prismatic block core, as well as through the layers of each analyzed particle, 3) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, kernel migration, and thinning of the SiC caused by interaction of fission products with the SiC, 4) two independent methods for determining particle failure probabilities, 5) a model for calculating release-to-birth (R/B) ratios of gaseous fission products, that accounts for particle failures and uranium contamination in the fuel matrix, and 6) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. This paper presents an overview of the code.

Source

  • HTR-2004,Beijing, China,09/22/2004,09/24/2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INEEL/CON-04-02240
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 910863
  • Archival Resource Key: ark:/67531/metadc882754

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 2004

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 4:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Miller, G. K.; Petti, D. A.; Maki, J. T. & Knudson, D. L. Current Capabilities of the Fuel Performance Modeling Code PARFUME, article, September 1, 2004; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc882754/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.