**Calculation Cover Sheet**

*Complete only applicable items.*

<table>
<thead>
<tr>
<th>2. Calculation Title</th>
<th>3. Document Identifier (including Revision Number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP Input Tables From WAPDEG for LA Design Selection: Enhanced Design Alternative II-3</td>
<td>B00000000-01717-0210-00095 REV 00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Total Pages</th>
<th>5. Total Attachments</th>
<th>6. Attachment Numbers - Number of pages in each</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>2</td>
<td>I-11 Pages, II-4 Pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed M. Monib</td>
<td>Haywood Anderson</td>
<td>Joon H. Lee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed M. Monib</td>
<td>8/24/99</td>
<td></td>
</tr>
<tr>
<td>Haywood Anderson</td>
<td>8/24/99</td>
<td></td>
</tr>
<tr>
<td>Joon H. Lee</td>
<td>8/24/99</td>
<td></td>
</tr>
</tbody>
</table>

**Remarks**

Input thermal hydrologic history files (DTN: LL.990302004242.085)

Computer software (WAPDEG version 3.09 and Post308) are tracked by TBV-568

Uses DTN: MO9807MWDWAPDEG.000 on Conceptual Model.

Uses DTN: MO9810SPA00013.000 on input assumptions and input data

Uses DTN: MO9812MWD0037.000

Supporting electronic media= ACC: MOL.19990622.0213, DTN: MO9906MWDWAP95.001

For LA Design Selection

Any obliterated information does not impact the technical meaning or content of this record.

**Revision History**

<table>
<thead>
<tr>
<th>11. Revision No.</th>
<th>12. Description of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Initial Issue</td>
</tr>
</tbody>
</table>
## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PURPOSE</td>
<td>4</td>
</tr>
<tr>
<td>2. METHOD</td>
<td>4</td>
</tr>
<tr>
<td>3. ASSUMPTIONS</td>
<td>6</td>
</tr>
<tr>
<td>4. USE OF COMPUTER SOFTWARE AND MODELS</td>
<td>14</td>
</tr>
<tr>
<td>4.1 SOFTWARE APPROVED FOR QA WORK</td>
<td>14</td>
</tr>
<tr>
<td>4.2 SOFTWARE ROUTINES</td>
<td>16</td>
</tr>
<tr>
<td>4.3 MODELS</td>
<td>16</td>
</tr>
<tr>
<td>5. CALCULATION INPUTS</td>
<td>16</td>
</tr>
<tr>
<td>5.1 MKHISTORY INPUTS</td>
<td>17</td>
</tr>
<tr>
<td>5.2 WAPDEG INPUTS</td>
<td>18</td>
</tr>
<tr>
<td>5.3 POST308 INPUTS</td>
<td>25</td>
</tr>
<tr>
<td>6. RESULTS</td>
<td>26</td>
</tr>
<tr>
<td>7. REFERENCES</td>
<td>34</td>
</tr>
<tr>
<td>8. ATTACHMENTS</td>
<td>35</td>
</tr>
</tbody>
</table>
FIGURES

Figure 1. Fraction of Drip Shields and Waste Packages Failed vs. Time. LADS – EDA II-3, 50 Yr. Ventilation, No Backfill, Always Drip .......................................................... 32

Figure 2. Average Number of Patch Penetrations vs. Time. LADS – EDA II-3, 50 yr. ventilation, No Backfill, Always Drip .......................................................... 33
1. PURPOSE

The purpose of this calculation is to document 1) the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09)) simulations used to analyze degradation and failure of 2-cm thick titanium grade 7 corrosion resistant material (CRM) drip shields (that are placed over waste packages composed of a 2-cm thick Alloy 22 corrosion resistant material (CRM) as the outer barrier and an unspecified material to provide structural support as the inner barrier) as well as degradation and failure of the waste packages themselves, and 2) post-processing of these results into tables of drip shield / waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) computer code. This calculation supports Performance Assessment analysis of the License Application Design Selection (LADS) Enhanced Design Alternative (EDA) II-3.

The aging period in the EDA II design (CRWMS M&O 1999f. Design Input Request for LADS Phase II EDA Evaluations, Item 1 Row 9 Column 3) was replaced in the case of EDA II-3 with 25 years preclosure ventilation, leading to a total of 50 years preclosure ventilation. The waste packages are line loaded in the repository and no backfill is used.

2. METHOD

Temperature and relative humidity (RH) time histories at the drip shield / waste package surfaces are calculated elsewhere and provided as input to this WAPDEG simulation. These histories are pre-processed into a form suitable for use as input to the WAPDEG stochastic simulation code through the use of the pre-processor Mkhistory (Attachment I). The stochastic simulation code WAPDEG (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09)) is used to generate drip shield / waste package failure profiles. WAPDEG’s inputs also include various temperature and relative humidity thresholds for corrosion initiation, corrosion models, and corrosion model parameter distributions. WAPDEG has the capability to model drip shield / waste package failure degradation either through localized corrosion processes (pitting or crevice corrosion), leading to small pinhole perforations, or through general corrosion processes leading to much larger “patch” perforations. In this calculation, the drip shields are assumed to only undergo general corrosion processes, which result in “patch” perforations (see Assumption 3.9 in Section 3). More detailed discussions of the WAPDEG conceptual model are given elsewhere (CRWMS M&O 1998a. Total System Performance Assessment-Viability Assessment (TSPA-VA) Analyses Technical Basis Document - Chapter 5, Waste Package Degradation Modeling and Abstraction, pp. 5-26 to 5-29). The drip shield / waste package failure profiles calculated by WAPDEG consist of time-varying measures of the number of pit or patch penetrations on each drip shield / waste package. The WAPDEG post-processor, Post308 (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), Appendix D) abstracts this information to produce one RIP input table (Golder Associates. 1998, pp. 7-22 through 7-25) per WAPDEG simulation. The RIP input table contains:

1) The fraction of drip shields / waste packages failed versus time curve for the simulation,
2) The average number of pit penetrations per failed drip shield / waste package versus time curve, and
3) The average number of patch penetrations per failed drip shield / waste package versus time curve.

As mentioned earlier, in this calculation the drip shields are assumed to only undergo general corrosion processes, which result in "patch" perforations. As a result, for the drip shields, the above curves only reflect the results of "patch" perforations (i.e., the curve for RIP input Item 2, above, for instance, will indicate no pit penetrations for the drip shields).

Post308 has two main objectives:

a) It reformatsthe WAPDEG output to conform to the RIP input format and,

b) It decreases the number of points in each of the three curves discussed above to approximately 83 (or less depending on the data being processed) through a process of time averaging.


Waste package failures under dripping conditions were modeled by executing the WAPDEG code twice, as described in Section 3.0. The first WAPDEG simulation (Simulation 1 using the input file NE1a55EDA2-3-ds.inp) models 2-cm thick titanium grade 7 drip shield failures. The first breach curve resulting from this simulation was then used to create a distribution of dripping start times for the waste packages beneath the failed drip shields. This distribution is contained in the file NE1a55EDA2-3-ds.cdf. A second WAPDEG simulation (Simulation 2 using the input file NE1a55EDA2-3-wp.inp) was then performed for waste package failures using this dripping start time distribution. Under non-dripping conditions, the presence of the drip shield is irrelevant to waste package degradation modeling and only one WAPDEG simulation is necessary (Simulation 3 using the input file NE0a5s6EDA2-3-wp.inp). These files are included in the electronic media supporting this calculation (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001).

In addition, "barriers importance assessment" (defense-in-depth) WAPDEG simulations were performed, to determine the relative importance of certain key parameters. The first WAPDEG simulation under this scenario models dripped on waste package failure without the presence of a drip shield (Simulation 4) using the long term average temperature and RH time histories as in Simulations 1-3, and using the input file NE1a5s5EDA2-3-wpns.inp) (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001).

Defense-in-depth WAPDEG simulations analogous to Simulations 1, 2, and 3, above were performed using a constant temperature and relative humidity history profile. Simulations using the constant thermal hydrologic history were performed for: (1) drip shield degradation
3. ASSUMPTIONS

No assumptions are made in executing Mkhistory. The limitations on the Mkhistory software routine and on the validity of the resulting output are discussed in detail in Attachment I.

For the calculations involved in attaining a post processed table for input into RIP, there are two steps to consider: 1) Execution of the WAPDEG code and; 2) Post processing of WAPDEG output for creation of tables for input to RIP. There are several assumptions necessary to consider for the WAPDEG simulations. With the exception of the different thermal hydrologic (time/temperature/relative humidity) histories and the assumptions noted below, the modeling assumptions used to model degradation of the drip shields and waste packages are identical to those used previously in the TSPA-VA REV 01 base case calculation (CRWMS M&O 1998d. Creating Input Tables from WAPDEG for RIP) (DTN: MO9810SPA00013.000) to model degradation of dual-barrier waste packages (i.e., a 10-cm carbon steel outer barrier around a 2-cm CRM inner barrier). Although WAPDEG version 3.07 (CRWMS M&O 1998c. Software Routine Report for WAPDEG (Version 3.07)) was used in the TSPA-VA base case calculation and WAPDEG version 3.09 is used in the present calculation, the assumptions listed in the TSPA-VA REV 01 base case calculation are applicable to the present calculation (with the exception of those noted below). No additional assumptions pertaining to the use of the Post308 code are made in the calculation of the drip shield or waste package degradation profiles.

The WAPDEG input file NE1a5s5EDA2-3-ds.inp is used to model degradation of a 2 cm thick titanium grade 7 drip shield. The following assumptions are made for titanium grade 7 drip shield corrosion degradation modeling:

3.1 The variability in drip shield degradation is adequately characterized by modeling 400 drip shields. This assumption is made to be consistent with the number of waste packages simulated. This assumption is used in the WAPDEG input file NE1a5s5EDA2-3-ds.inp in the fourth line (first value) after the last history file name.

3.2 The fraction of model parameter variance assigned to drip-shield-to-drip-shield variance is set at 0.35 (the second value on the third input line after the last thermal hydrologic “history” file name in the WAPDEG input file NE1a5s5EDA2-3-ds.inp). The remainder of the model parameter variance is assigned to patch-to-patch variance between the patches on each drip shield. This assumption is made to be consistent with Assumption 3.12 in the TSPA-VA REV 01 base case calculation (CRWMS M&O 1998d. Creating Input Tables from WAPDEG for RIP, Section 3.0 Assumption 3.12) in which the waste-
package-to-waste-package fraction of model parameter variance is set to 0.35. It is expected that the same material and exposure environment variances appropriate for consideration in modeling of the waste packages would also be appropriate for consideration in modeling the drip shields and lead to the same variance partitioning.

3.3 The total drip shield surface area modeled is 29.91 m² for each drip shield. This is based on the length of the 21 PWR (Pressurized Water Reactor) waste package type over which it is emplaced and drip shield dimensions provided (CRWMS M&O 1999b. Design Input Transmittal For Waste Stream Information for LADS, Phase 2, EDAs, Item 1 p. 3/34 Table 2; CRWMS M&O 1999c. Design Input Transmittal For Waste Stream Information for LADS, Phase 2, EDAs Item 5 p. 1/2). The drip shields are assumed to have a “mailbox” (inverted U-shaped) configuration and to be placed over the waste packages with a gap between the drip shields and the waste packages to avoid direct contact. The waste package total length is 5.275 m. The waste package total length includes two 0.225-m outer barrier extensions (“skirts”), for lifting of the waste package (CRWMS M&O 1999e. Design Input Transmittal For Skirt Dimensions for LADS, Phase 2, EDA Waste Packages, Item 1 p. 1/1). The extensions are not considered in corrosion modeling. The inner and outer radii of the curved portion of the drip shield (the drip shield is corrugated like a storm drain pipe) are 1.050 m and 1.220 m, respectively. The average of the drip shield inner and outer radii is used to define an effective radius to be used in determining the effective surface area of the drip shield. The function of the drip shield is to delay dripping water contact with the waste package surface until after drip shield failure. The breached drip shield area, through which dripping water can flow, is the modeling area of interest to this calculation. The most conservative assumption would be that dripping water can penetrate the drip shield through its entire surface area. The least conservative assumption would be that dripping water could penetrate the drip shield only through the projected area above the waste package (i.e., a rectangular area defined by the waste package diameter multiplied by its length). The effective area used in this calculation is a realistic compromise between these two extreme approaches. The drip shield configuration is a semi-circular top with vertical side plates. The height of the drip shield side plates is 1.317 m. Thus, the drip shield surface area modeled (i.e., subject to corrosion degradation) is given by:

\[
\begin{align*}
\text{IR} & := 1.050 \text{ m} & \text{OR} & := 1.220 \text{ m} \\
L & := 5.275 \text{ m} - 2 \times 0.225 \text{ m} & L & = 4.825 \text{ m} \\
\text{SPH} & := 1.317 \text{ m} \\
\text{er} & := \frac{(\text{IR} + \text{OR})}{2} & \text{er} & = 1.135 \text{ m} \\
\text{Tot} & := 2 \times \text{SPH} \times L + \pi \times \text{er} \times L & \text{Tot} & = 29.91 \text{ m}^2 \\
\text{PS} & := 0.0310 \text{ m}^2
\end{align*}
\]

- Inner (IR) and outer (OR) radii of corrugated drip shield
- Waste package total length - two skirts
- Drip shield side plate height
- Effective Radius
- Drip shield surface area modeled subject to corrosion
- Patch Size
This assumption is used only in determining the number of patches per waste package in Assumption 3.4.

### 3.4 The drip shield surface area was divided into 965 patches each 0.0310 m$^2$ in area. This patch size was chosen to be consistent with the patch size chosen in the TSPA-VA REV 01 base case calculation (CRWMS M&O 1998d. Creating Input Tables from WAPDEG for RIP, Section 3.0 Assumption 3.3). Continuing from the calculations presented in Assumption 3.3 above:

\[
\frac{\text{Tot}}{\text{PS}} = 965
\]

| Patch Size | 965 Patches/DS |

This assumption is used in the WAPDEG input file NE1a5s5EDA2-3-ds.inp in the fourth line (second value) after the last thermal hydrologic history file name.

### 3.5 The drip shields are 2-cm thick and are composed of titanium grade 7 (CRWMS M&O 1999f. Design Input Request for LADS Phase II EDA Evaluations, Item 3 p. 2). The current version of WAPDEG was developed to model a two-barrier waste package, with the outer barrier hard-wired to be a corrosion allowance material (CAM) of carbon steel, and the corrosion model parameters for the inner barrier are supplied by the user through the WAPDEG input file. In order to model the drip shield corrosion degradation process as a corrosion resistant material (CRM) with no CAM, it is required to assume that the drip shield has a very thin (1e-12 cm) "simulated" CAM barrier and set the CAM pit multiple (or localization factor) to a very large number (1e12) in the WAPDEG input file used. The effect is an immediate failure of the drip shield simulated CAM barrier upon satisfaction of the relative humidity (RH) and temperature thresholds for corrosion initiation of the simulated CAM. This assumption is used in the WAPDEG input file NE1a5s5EDA2-3-ds.inp on the second input line after the last history file name (first value) and on the third input line after the [No Drip Model, CAM] and [Neutral Drip Model, CAM] input headers.

### 3.6 Corrosion of the drip shields is assumed not to occur until after they are emplaced and ventilation ceases (emplacement of drip shields and cessation of ventilation is not assumed until 50 years after waste package emplacement, plus an additional year as discussed below). The basis for this assumption is that it is not expected that the drip shields will be fabricated any significant period of time before their use. In the WAPDEG code, this is accomplished by using a 51 year corrosion delay time (the extra year was added to assure corrosion does not initiate until after the drip shields are emplaced and ventilation is ceased). This assumption is used in the WAPDEG input file NE1a5s5EDA2-3-ds.inp on the nineteenth and twentieth input lines after the last history file name. In the design input request for EDA II (CRWMS M&O 1999f. Design Input Request for LADS Phase II EDA Evaluations, Item 1 Row 9 Column 3), a 25 year above
ground aging and 25 year preclosure ventilation time was used for the waste package. In the case of EDA II-3 the aging period was replaced with a 25 year preclosure ventilation leading to a total of 50 years preclosure ventilation.

3.7 The temperature corrosion initiation threshold for the very thin simulated CAM outer barrier was assumed to be represented by the cumulative distribution function for titanium grade 7 as given in A22TiTth.pdf (CRWMS M&O 1999d. Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 1/3 Response 1). This assumption has the effect of delaying the initiation of corrosion of the titanium grade 7 drip shield until the temperature initiation threshold for corrosion of the simulated CAM is satisfied (since the CAM fails immediately upon satisfaction of the corrosion initiation thresholds). This assumption is based on the input received. This assumption is used in the WAPDEG input file NE1a5s5EDA2-3-ds.inp on the first and second input lines after the [No Drip Model Features] header and on the first and second input lines after the [Neutral Drip Features].

3.8 The relative humidity corrosion initiation threshold for the very thin simulated CAM outer barrier was assumed to be represented by the cumulative distribution function for titanium grade 7 as given in A22TiRHth.pdf (CRWMS M&O 1999d. Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 1/3 Response 2). This assumption has the effect of delaying the initiation of corrosion of the titanium grade 7 drip shield until the relative humidity initiation threshold for corrosion of the simulated CAM is satisfied (since the CAM fails immediately upon satisfaction of the corrosion initiation thresholds). This assumption is used in the WAPDEG input file NE1a5s5EDA2-3-ds.inp on the third and fourth input lines after the [No Drip Model Features] header and on the fifth and sixth input lines after the [Neutral Drip Features].

3.9 It is assumed that there is no localized corrosion (i.e., there is only general or “patch” corrosion) of the titanium grade 7 drip shields. This assumption is based on input received (CRWMS M&O 1999d. Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 2/3 Response 5). This assumption is used in the input file NE1a5s5EDA2-3-ds.inp in the [No Drip Model, CRM] and [Neutral Drip Model, CRM] input segments by using the “CRMGeneralRateOnly” model.
3.10 The general corrosion rates used to model general corrosion degradation of the titanium grade 7 drip shields under dripping conditions are derived in Attachment II. In Attachment II, it is assumed that it is appropriate to derive the titanium grade 7 corrosion cdfs (3 of them) used with the “CRMGeneralCorrosionRateOnly” model at the temperatures of 30°C (gTi15050.cdf), 60°C (gTi25050.cdf), and 120°C (gTi35050.cdf). The basis for this assumption is that these thermal conditions span the possible repository exposure conditions under which active general corrosion can occur based on the thermal hydrologic history files used and the temperature corrosion initiation threshold used (A22TiTth.cdf). This assumption is used throughout Attachment II.

3.11 In deriving the general corrosion rates used to model general corrosion degradation of the titanium grade 7 drip shields under dripping conditions in Attachment II the total variance of the cdfs are assumed to be composed of 50% uncertainty and 50% variability, and it is assumed that the median general corrosion rate is at the 50th percentile of the uncertainty distribution. This assumption is based on input received (CRWMS M&O 1999d. Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due To Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 1/3 Response 1). This assumption is used throughout Attachment II.

3.12 In deriving the general corrosion rates used to model general corrosion degradation of the titanium grade 7 drip shields under dripping conditions in Attachment II, it is assumed that it is appropriate to derive the titanium grade 7 corrosion cdfs (3 of them) used with the “CRMGeneralCorrosionRateOnly” model at 201 equally spaced (in natural logarithm space) general corrosion rates between the minimum and maximum general corrosion rate for each temperature used (30°C, 60°C, and 120°C). Given that none of the general corrosion rate distributions span more than 5 orders of magnitude (see Attachment II), use of this assumption allows each decade of corrosion rates to be characterized by at least 40 cdf points. This assumption is used throughout Attachment II for all derived distributions.

3.13 In deriving the general corrosion rates used to model degradation of the titanium grade 7 drip shields under dripping conditions in Attachment II, cumulative probability values are interpolated linearly between natural log general corrosion rate values. It is assumed that this interpolation methodology results in well approximated cumulative probability values. As mentioned in Assumption 3.12, each decade of corrosion rates is characterized by at least 40 cdf points. Given this density of points in the cdfs (i.e., the small size of the interval over which interpolation is occurring), the corrosion rate values obtained are well approximated. This assumption is used in the variance splitting procedure (slinvar(x, p, wtu, qu)) in Attachment II.

The WAPDEG input file NE1a55EDA2-3-wp.inp models a single-layer 2-cm thick Alloy 22 waste package under a 2-cm thick titanium grade 7 drip shield (the drip shield is always dripped on). As mentioned in Section 1.0, the waste package design considered in the present calculation is a 2-cm thick Alloy 22 outer barrier and an inner barrier with a reasonable thickness to provide
structural support. Design specifications for the inner barrier are not available. In the present
calculation, credit for the inner barrier performance is not taken. In this simulation, the waste
package is not contacted by dripping water until the drip shield fails. The WAPDEG input file
NE0a5s6EDA2-3-wp.inp models a single-layer 2-cm thick Alloy 22 waste package under a 2-cm
thick titanium grade 7 drip shield neither of which is ever dripped on (equivalent, for WAPDEG
modeling purposes, to having no drip shield present). The assumptions used in modeling Alloy
22 waste package degradation are identical to those used in the TSPA-VA REV 01 base case
calculation (CRWMS M&O 1998d. Creating Input Tables from WAPDEG for RIP) (DTN:
MO9810SPA00013.000) with the exception of those listed below.

The following assumptions are made for Alloy 22 waste package degradation modeling:

3.14 The total waste package surface area modeled is 27.55 m² per waste package or 889
patches each with an area of 0.0310 m². This is based on the 21 PWR (Pressurized Water
Reactor) waste package dimensions provided (CRWMS M&O 1999b. Design Input
Transmittal For Waste Stream Information for LADS, Phase 2, EDAs, Item 1 p. 3/34
Table 2). The length of the waste package is 5.275 m. The waste package total length
includes two 0.225-m outer barrier extensions ("skirts"), for lifting of the waste package
(CRWMS M&O 1999e. Design Input Transmittal For Skirt Dimensions for LADS, Phase
2, EDA Waste Packages, Item 1 p. 1/1), one on each end (i.e., two of them) which are not
considered in corrosion modeling (See Assumption 3.3). Thus, the waste package surface
area modeled (i.e., subject to corrosion degradation) is given by the radial surface area of
the entire waste package and the area of the two end caps. The calculation below is a
continuation of that presented in Assumptions 3.3 and 3.4:

\[
\begin{align*}
\text{OD} &:= 1.564 \text{m} & \text{Waste Package Outer Diameter} \\
\text{L} &:= 4.825 \text{m} & \text{Waste Package Total Length - Two Skirts} \\
\text{WPA} &:= \pi \cdot \text{OD} \cdot \text{L} + 2 \pi \cdot \left( \frac{\text{OD}}{2} \right)^2 & \text{Total Waste Package Area Modeled} \\
& & \text{Subject to Corrosion} \\
\text{PS} &:= 0.0310 \text{m}^2 & \text{Patch Size} \\
\frac{\text{WPA}}{\text{PS}} &:= 888.701 & \text{889 Patches/WP} \\
\end{align*}
\]

This assumption is used on the fourth input line (second value) in the WAPDEG input
files NE1a5s5EDA2-3-wp.inp and NE0a5s6EDA2-3-wp.inp.

3.15 The NE1a5s5EDA2-3-ds.cdf (a cdf of first breach times of the drip shields modeled)
distribution is used as the "Distribution parameter(s)" for the "Distr for time range for
ceramic protection" of the waste packages (this is perhaps better termed "the delay time
for corrosion initiation" of the waste packages) in the WAPDEG input file
NE1a5s5EDA2-3-wp.inp. The basis of this assumption is that dripping water cannot
contact a waste package underneath an intact drip shield. This distribution is read by the
fourteenth and fifteenth lines after the last thermal hydrologic history file name. (No drip
shield delay time is used in the input file NE0a5s6EDA2-3-wp.inp.)
3.16 After an initial patch failure of a titanium grade-7 drip shield (defined by the NE1a5s5EDA2-3-ds.cdf), ten percent (10%) of the waste package surface area under the breached drip shield is assumed to be contacted by the dripping water. This assumption is made to incorporate the anticipated protection from dripping water contact that the drip shield provides subsequent to its initial (single patch) breach. In light of Assumptions 3.3 and 3.4, in which the entire surface area of the drip shield is considered in degradation modeling, this is a conservative assumption as the first breach of the drip shield may be on one of the side plates and not directly over the waste package. This assumption is used in the WAPDEG input file NE1a5s5EDA2-3-wp.inp on the tenth through thirteenth input lines after the last thermal hydrologic history file name. This assumption does not apply to the input file NE0a5s5EDA2-3-wp.inp.

3.17 The current version of WAPDEG was developed to model a two-barrier waste package, with the outer barrier hard-wired to be a corrosion allowance material (CAM) of carbon steel, and the corrosion model parameters for the inner barrier able to be supplied by the user through the WAPDEG input file. In order to model a corrosion resistant material (CRM) with no CAM (corresponding to the single-barrier waste package), it is required that the “simulated” CAM thickness be set to a small number (1e-12 cm) and the CAM pit multiple (or roughness factor) to a large number (1e12) in the WAPDEG input file used. The effect is an immediate failure of the CAM upon satisfaction of the relative humidity (RH) and temperature thresholds for corrosion initiation of the simulated CAM. This assumption is used in the WAPDEG input files NE1a5s5EDA2-3-wp.inp and NE0a5s6EDA2-3-wp.inp on the second input line after the last history file name and on the third input line after the [No Drip Model, CAM] and [Neutral Drip Model, CAM] input headers.

3.18 The temperature corrosion initiation threshold for the very thin simulated CAM outer barrier was assumed to be represented by the cumulative distribution function for Alloy 22 as given in A22TiTth.cdf (CRWMS M&O 1999d. Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 1/3 Response 1 and 3). This assumption has the effect of delaying the initiation of corrosion of the Alloy 22 until the temperature initiation threshold for corrosion of the simulated CAM is satisfied (since the CAM fails immediately upon satisfaction of the corrosion initiation thresholds). This assumption is based on the input received). This assumption is used in the WAPDEG input files NE1a5s5EDA2-3-wp.inp and NE0a5s6EDA2-3-wp.inp on the first and second input lines after the [No Drip Model Features] and the [Neutral Drip Features] (if dripping occurs) headers.

3.19 The relative humidity corrosion initiation threshold for the very thin simulated CAM outer barrier was assumed to be represented by the cumulative distribution function for Alloy 22 as given in A22TiRHth.cdf (CRWMS M&O 1999d. Design Input Transmittal
For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 pp. 1/3 through 2/3 Response 2 and 4). This assumption has the effect of delaying the initiation of corrosion of the Alloy 22 until the relative humidity initiation threshold for corrosion of the simulated CAM is satisfied (since the CAM fails immediately upon satisfaction of the corrosion initiation thresholds). This assumption is used in the WAPDEG input files NE1a5s5EDA2-3-wp.inp and NE0a5s5EDA2-3-wp on the third and fourth input lines after the [No Drip Model Features] header and on the fifth and sixth input lines after the [Neutral Drip Features] header (if dripping occurs).

3.20 General corrosion of the single Alloy 22 barrier under dripping is assumed to take place under mild electrochemical exposure conditions (pH range 3-10, 340 mV SHE). The basis for this assumption is statements in the Engineered Materials Characterization Report (McCright 1998), among them: “Even if the salts present in the ground water concentrate on the warm metal surface, the net effect may produce an environment that is not highly aggressive.” (p. 2-3). The absence of the CAM outer barrier (relative to the TSPA-VA design) also eliminates the possibility of tight crevice formation (a probable site for aggressive chemistry formation leading to higher corrosion rates) between the CAM and CRM barriers. This assumption is used in the WAPDEG input file NE1a5s5EDA2-3-wp.inp in the [Neutral Drip Model, CRM] input segment by using the “CRMGenrate+ArrheniusPit” model and corrosion rates from the gCx5050.cdf files (where x is the numeric 1, 2, and 3 corresponding to temperatures at 25, 50 and 100°C, respectively). These files are derived in Attachment I of the LA Design Selection calculation on Drip Shields and Quartz Backfill (CRWMS M&O 1998e. RIP Input Tables From WAPDEG For LA Design Selection: Drip Shield & Quartz Backfill Attachment I) (DTN: MO9812MWDDSQ37.000).

3.21 It is assumed that localized corrosion of Alloy 22 is possible in the presence of drips and if the temperature is above a critical temperature threshold for initiation. The critical threshold temperature is input to this calculation (file: A22LCTth.cdf) (CRWMS M&O 1999d. Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 2/3 Response 6). This assumption is based on that input. This assumption is used in the [Neutral Drip Features] input segment in the WAPDEG input file NE1a5s5EDA2-3-wp.inp on the third and fourth input lines following the [Neutral Drip Features] header.

3.22 For the 50 years before pre-closure ventilation ceases plus the one additional year (total of 51 years-see Assumption 3.6), it is assumed the waste package is not dripped upon. The basis for this assumption is that the repository is ventilated during this time (CRWMS M&O 1999f. Design Input Request for LADS Phase II EDA Evaluations. Item 1, Row 9
Column 3) and any seepage water in the emplacement drift is removed by the air flow. This assumption was used in defining the dripping initiation time on the fourteenth and fifteenth input lines after the last thermal hydrologic history file name in the WAPDEG input file NE1a5s5EDA2-3-wp.inp.

3.23 Corrosion degradation of the waste package is assumed not to occur until after emplacement of the backfill (50 years after waste package emplacement). This was accomplished by using a 51-year delay time (the extra year was added to ensure corrosion degradation does not initiate) on the 19th and 20th input lines after the last thermal hydrologic history file name in the WAPDEG input file, NE1a5s5EDA2-3-wp.inp. Use of the 51-year delay time has no effect on the particular simulations considered in this calculation. In order for corrosion degradation to initiate, the temperature and relative humidity thresholds (as given in A22Th.cdf and A22Rh.cdf, respectively) for corrosion initiation must be satisfied. The minimum relative humidity at which corrosion can initiate, as given in A22Rh.cdf is 80%. None of the thermal hydrologic history files used in this calculation satisfies this threshold until after 1,000 years. Therefore, the 51-year delay time has no effect on the waste package degradation curves resulting from this calculation.

The following additional assumptions were made for the, defense-in-depth WAPDEG simulations:

3.24 For the constant history, defense-in-depth simulation, ambient temperature and relative humidity conditions were used over the 1,000,000 year period. From the thermal hydrologic history file (Buscheck, T. A. 1999. LADS Phase-II Multi-Scale TH Calculations for EDA II-2) (DTN: LL990302004242.085) NE_snf_noBF_60_c_j4_12_03_02_001_average, the ambient temperature and relative humidity were assumed to be 25.5070°C and 0.998, respectively (the waste package temperature and relative humidity at 900,000 years using present day values).

3.25 For the constant history, no drip shield simulation (Simulation 8), the drip shield CDF file, NE1a5s5EDA2-3-ds.cdf, was not used.

4. USE OF COMPUTER SOFTWARE AND MODELS

4.1 SOFTWARE APPROVED FOR QA WORK

The software used to perform the drip shield / waste package degradation simulations was WAPDEG version 3.09 (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09)) (TBV-568) and its post processor, Post308 (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), Appendix D) (TBV-568). The following has been obtained from the Software Configuration Secretary (SCS) relative to this software:

Software Name: WAPDEG

B0000000-01717-0210-00095 REV 00 14 08/24/99
Software Version: 3.09
CSCI Identifier: 30048 V3.09
Document Identifier: 30048-2999, REV 02
Media Identifier: 30048-M04-001, REV 02
Software Change Request: LSBR 177

This software was obtained from the Software Configuration Manager in accordance with appropriate procedures. The WAPDEG simulations were executed on a DELL PowerEdge 2200 Workstation equipped with Dual (2) Pentium II 266 MHz processors (CRWMS M&O tag 112371) in the Windows NT 4.0 operating system. The post processing was accomplished on a DELL PowerEdge 2200 Workstation equipped with Dual (2) Pentium II 266 MHz processors (CRWMS M&O tag 112371) in the Windows NT 4.0 operating system.

WAPDEG version 3.09 is an appropriate tool for this application, because it was specifically designed to calculate waste package failure profiles (and the modeling process may be adapted to calculate drip shield failure profiles) in a manner consistent with the information requirements of the RIP code. Although there has been a Software Routine Report (SRR) prepared for version 3.09 of the WAPDEG code (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09)), WAPDEG did not go through the complete verification and validation process required by QAP-SI-0 REV 04 when effective, so it is not to be considered qualified and has been designated “to be verified” (TBV-568). WAPDEG version 3.09 was used within the range of values for which it was validated in its Software Routine Report (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09)).

Post308 is an appropriate tool for this application, because it is able to read WAPDEG output files and post-process them to make tables for input into RIP. Although all of the documentation necessary to fully qualify the Post308 code (as a software routine) has been included in the WAPDEG version 3.09 SRR (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), Appendix D), since WAPDEG version 3.09 did not go through the complete verification and validation process required by QAP-SI-0 REV 04 when effective, Post308 is not to be considered qualified and has been designated “to be verified” (TBV-568). Post308 was used within the range of values for which it was validated in its (equivalent of a) Software Routine Report (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), Appendix D).
4.2 SOFTWARE ROUTINES

Mkhistory version 1.01 (Attachment I) was used to pre-process the thermal hydrologic time, temperature, and relative humidity "histories" into a format usable by the WAPDEG code.

**Software Name:** Mkhistory

**Software Version:** 1.01

Mkhistory was executed on a DELL PowerEdge 2200 Workstation equipped with Dual (2) Pentium II 266 MHz processors (CRWMS M&O tag 112371) in the Windows NT 4.0 operating system. Mkhistory version 1.01 has gone through the complete verification and validation process required by AP-SI.1Q for a software routine and is thus a fully qualified software routine approved for use in quality affecting work. Mkhistory was used within the range of values tested and documented in Attachment I.

Mkhistory version 1.01 is an appropriate application because it is able to read input data and produce output files that can be used as input into WAPDEG.

4.3 MODELS

The WAPDEG conceptual model and computer software are used in this calculation. The data tracking numbers for this model’s inputs and outputs as well as the documentation sources for this model are contained in the TSPA-VA REV 01 base case calculation (CRWMS M&O 1998d. Creating Input Tables from WAPDEG for RIP) (DTN: MO9810SPA00013.000), the TSPA-VA Technical Basis Document (CRWMS M&O 1998a. Total System Performance Assessment- Viability Assessment (TSPA-VA) Analyses Technical Basis Document - Chapter 5, Waste Package Degradation Modeling and Abstraction) (DTN: MO9807MWDWAPDG.000), and the WAPDEG version 3.09 Software Routine Report (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09)). The specific model inputs and outputs relevant to this calculation have also been submitted to the data tracking system (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001) and are discussed further in the next section.

The WAPDEG computer model was selected for use in this calculation because it was specifically designed to calculate waste package failure profiles (and the modeling process may be adapted to calculate drip shield failure profiles) in a manner consistent with the information requirements of the RIP code.

5. CALCULATION INPUTS

All inputs discussed in this section and all results discussed in the following section are included in the electronic media that supports this calculation (CRWMS M&O 1999a. Supporting Media
or RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: M09906MWDWAP95.001).

5.1 MKHISTORY INPUTS

Files containing the relative humidity and temperature histories at the surface of drip shields and waste packages in the northeast (NE) region of the repository were provided as input to this calculation (Buscheck 1999) (DTN: LL990302004242.085). These histories are organized by bin numbers and model identifier with file names like NE_snf_mean_yy_noBF_60_c_j4_22_03_02_001_data, where NE denotes the northeast region of the potential repository, snf denotes commercial spent nuclear fuel, yy is a bin number, noBF denotes no backfill was used, 60 denotes an areal mass loading of 60 MTU/acre, and the numeric 22 indicates that these thermal hydrologic histories are applicable to "long-term average" climate conditions. The remainder of the file name designators are not relevant to this calculation.

The thermal hydrologic history files contain columns of ASCII numerical data. Column 1 contains the time (years), Column 2 the waste package surface temperature (°C), Column 3 the relative humidity at the waste package surface (fraction), Column 4 the air mass fraction (Xair), Column 5 the liquid saturation in the invert (fraction), Column 6 the drift wall temperature (°C), Column 7 the drift wall relative humidity (fraction), Column 8 the drip shield surface temperature (°C), and Column 9 the drip shield surface relative humidity (fraction). In this calculation, a total of 10 thermal hydrologic history files are used, each distinguished by differing values of the thermal hydrologic history file bin number. Bin numbers (the yy discussed above) 00, 01, 10, 11, 20, 21, 31, 41, 51, 61 and 81 are used in this calculation (i.e., NE_snf_mean_00_noBF_60_c_j4_22_03_02_001_data, NE_snf_mean_01_noBF_60_c_j4_22_03_02_001_data, ... etc.).

These thermal hydrologic history files were processed by the Mkhistory software routine. The bulk (but not all) of Mkhistory’s processing is devoted to copying Columns 1, 2, and 3 (the columns containing the time, temperature and RH at the waste package surface) or Columns 1, 8, and 9 (the columns containing the time, temperature and RH at the drip shield surface) from the thermal hydrologic history files named in Column 1 of the Mkhistory input file(s) to the file named in Column 2 of the Mkhistory input file. Note that the first row of ASCII numerical data (corresponding to time equals 0 years) is not copied to the file named in Column 2 of the Mkhistory input file as discussed in Attachment I. Two Mkhistory input files were used, EDA2-3ltads.mk, for the drip shield surface, and EDA2-3lta.mk for the waste package surface. For the constant history defense-in-depth simulations, the history file was made manually without the use of the Mkhistory software routine (history file name EDA2-3Const.hst). The initial contents of the Mkhistory input file EDA2-3lta.mk are:

10,9,3 | number of files, columns, and columns to print
1,2,3 | print specified columns
NE_snf_mean_00_noBF_60_c_j4_22_03_02_001_data NEsf00noBF60cj4220302.hst
NE_snf_mean_01_noBF_60_c_j4_22_03_02_001_data NEsf01noBF60cj4220302.hst
NE_snf_mean_10_noBF_60_c_j4_22_03_02_001_data NEsf10noBF60cj4220302.hst
NE_snf_mean_11_noBF_60_c_j4_22_03_02_001_data NEsf11noBF60cj4220302.hst

B00000000-01717-0210-00095 REV 00 17 08/24/99
The first line of this Mkhistory input file indicates that 10 thermal hydrologic history files (whose file names are listed in the first column of the Mkhistory input file (starting on row 3)) are to be processed by Mkhistory, these history files contain 9 columns of data, of which 3 will be extracted to the file name specified in the second column of the Mkhistory input file. The second line of the Mkhistory input file indicates that columns 1, 2, and 3 of the thermal hydrologic history files (whose file names are listed in the first column of the Mkhistory input file (starting on row 3)) will be extracted to the file name specified in the second column of the Mkhistory input file (i.e., data from NE_snf_mean_00_noBF_60_c_j4_22_03_02_001_data is to be copied to NEsf00noBF60cj4220302.hst, etc.). The above are the contents of EDA2-3lta.d before execution of Mkhistory (several data segments are appended to this file during Mkhistory program execution as discussed in Attachment I). The thermal hydrologic history files before and after processing by Mkhistory and the EDA2-3lta.mk and EDA2-3ds.mk files after execution of Mkhistory are included in the electronic media supporting this calculation (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001). Note that the contents of EDA2-3ds.mk cause Mkhistory to extract the columns of thermal hydrologic data relevant to the drip shield surface and copy them to files with a *.ds (for drip shield) file name suffix (which is then read by WAPDEG) in place of the previously discussed *.hst file name suffix.

Procedurally, the Mkhistory program prompts the user for a list-file name (this is the Mkhistory input file, i.e., EDA2-3lta.mk). The Mkhistory program then prompts the user for the total number of waste packages to be considered. The user entered "0" to cause the default value of 1,000,000 waste packages to be used in order to retain the maximum possible six digits of accuracy for the fraction of waste packages represented by each thermal hydrologic history file.

5.2 WAPDEG INPUTS

WAPDEG version 3.09 requires several input files (*.inp, *.cdf, and *.hst (or *.ds) files, see below) (DTN: MO9906MWDWAP95.001) and creates several output files (*.aux, *.bin, *.cam, *.crm, *.out, *.pat) (DTN: MO9906MWDWAP95.001). Post308 (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), Appendix D) reads from the *.bin, *.pat, *.out files of the WAPDEG version 3.09 results and creates several output files (*.asc, *.dat, *.rip) (DTN: MO9906MWDWAP95.001). The *.rip files are used as input to RIP (Golder Associates 1998) and are the primary results of this calculation described in Section 6.0.

The *.cdf file names and other model parameters are contained in the WAPDEG input file for the particular simulation being executed. Specifically WAPDEG requires:
1) Thermal hydrologic history files containing the relative humidity (RH) and temperature (T) at the surface of the waste packages (*.hst) or drip shields (*.ds, see the EDA2-3ds.mk file) (DTN: MO9906MWDWAP95.001).

2) Cumulative distribution functions (cdf) for the temperature threshold for the onset of corrosion. This threshold is used for the simulated outer barrier corrosion allowance material (CAM) of the drip shields and waste packages (file: A22TITh.cdf) (CRWMS M&O 1999d. Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 1/3 Response 1 and 3).

3) Cumulative distribution functions for the RH threshold for the onset of corrosion for the simulated CAM outer barrier of the drip shields and waste packages (file: A22TiRHth.cdf) (CRWMS M&O 1999d. Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 1/3 Response 2 and 4).

4) Cumulative distribution functions for the titanium grade 7 drip shield general corrosion rates (see Attachment II) at 30, 60, and 120°C (files: gTi15050.cdf, gTi25050.cdf, and gTi35050.cdf) (DTN: MO9906MWDWAP95.001).

5) Cumulative distribution functions for general corrosion rates under dripping water conditions for the Alloy 22 corrosion resistant material (CRM) (files: gCx5050.cdf). (CRWMS M&O 1998g. Alloy 22 Dripping General Corrosion Rate Cumulative Distribution Functions.) (DTN: MO9812MWDQS37.000).


7) The cumulative distribution function for the titanium grade 7 drip shield failures to use as drip start times for the waste packages beneath the failed drip shields (file: NE1a5s5EDA2-3-ds.cdf containing the first breach times from the WAPDEG simulation using the NE1a5s5EDA2-3-ds.inp input file). This cdf is used as a drip initiation time distribution in the WAPDEG simulation using the NE1a5s5EDA2-3-wp.inp input file. This file is included in the electronic media supporting this calculation (CRWMS M&O 1999a. Supporting Media for RIP Input tables From WAPDEG for LA Design Selection: Enhanced Design Alternative II-3). (DTN: MO9906MWDWAP95.001).

8) The above file names and other model parameters are contained in the WAPDEG input file (*.inp) for the particular simulation being executed. For the simulation of the drip shield / waste package failure profiles, the other parameters used in the WAPDEG input file are identical to those discussed in the TSPA-VA REV 01 base case calculation (CRWMS M&O 1998d. Creating Input Tables from WAPDEG for RIP, Section 5.0) (DTN: MO9810SPA00013.000), with the exceptions noted above in Section 3.0.

9) A cumulative distribution function for the temperature threshold for the initiation of localized corrosion of the Alloy 22 waste package (file: A22LCTh.cdf) (CRWMS M&O 1999d.
Design Input Transmittal For License Application Design Selection Phase 2 Enhanced Design Alternatives Input on 1) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By The Use of Backfill or Higher Thermal Loading, Item 1 p. 2/3 Response 6).

Three WAPDEG input files were used to generate the RIP input tables for the License Application Design Selection Analyses Enhanced Design Alternative II-3: Simulation 1 using the input file NE1a5s5EDA2-3-ds.inp (for the drip shield under dripping conditions); Simulation 2 using the input file NE1a5s5EDA2-3-wp.inp (for the waste package under dripping conditions only after drip shield failure); and Simulation 3 using the input file NE0a5s6EDA2-3-wp.inp (for the waste package under no dripping conditions). In addition, five WAPDEG input files were used to generate the RIP input tables for the License Application Design Selection Analyses Enhanced Design Alternative II-3 - Defense-in-Depth: Simulation 4 using the input file NE1a5s5EDA2-2-wpnds.inp (for the case with no drip shield under dripping conditions, using long term average temperature and RH time histories; Simulation 5 using the input file NE1a5s5EDA2-3-ds_did.inp (for the constant history drip shield under dripping conditions); Simulation 6 using the input file NE1a5s5EDA2-3-wp_did.inp (for the constant history waste package under dripping conditions after drip shield failure); Simulation 7 using the input file NE0a5s6EDA2-3-wp_did.inp (for the constant history waste package under no dripping conditions); and Simulation 8 using the input file NE1a5s5EDA2-3-wpnds_did.inp (for the constant history waste package under dripping conditions, with no drip shield). These input files are included in the electronic media supporting this calculation (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001).

The first two characters of the input file name indicate that the Northeast (NE) region of the potential repository (using its thermal hydrologic history files) is being simulated. The next character in the input file name (0 or 1) indicates, respectively, that a no-drip case is being simulated or the drip shields / waste packages (after drip shield failure, if applicable) are subject to dripping throughout the simulation. The next two characters (a5) indicate that the file is for the base case infiltration. The next characters (s5 or s6) refer to the different uncertainty/variability splits and percentile of the uncertainty distribution used for the median of the titanium grade 7 (drip shield) and Alloy 22 (waste package) general corrosion rate variability distributions. The classifications are as follows:

<table>
<thead>
<tr>
<th>Uncertainty/Variability Splitting</th>
</tr>
</thead>
</table>

(0.25 Uncertainty = 0.75 Variability, etc.)

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th percentile</td>
<td>s1</td>
<td>s2</td>
<td>s3</td>
</tr>
<tr>
<td>50th percentile</td>
<td>s4</td>
<td>s5</td>
<td>s6</td>
</tr>
<tr>
<td>95th percentile</td>
<td>s7</td>
<td>s8</td>
<td>s9</td>
</tr>
</tbody>
</table>
From the above table, it is apparent that the dripping input files (NElaSsSEDA2-3-ds.inp and NElaSsSEDA2-3-wp.inp) use a 50% uncertainty - 50% variability split and use the 50th percentile of the uncertainty distribution for the median of the general corrosion rate variability distributions. The non-dripping input file (NE0aSs6EDA2-3-wp.inp) uses a 75% uncertainty - 25% variability split and uses the 50th percentile of the uncertainty distribution for the median of the general corrosion rate variability distributions. The characters (EDA2-3) indicate that these input files are used in analyzing LA Design Selection Enhanced Design Alternative II-3. For reference, below are shown the input files for the drip shield, NElaSsSEDA2-3-ds.inp, and waste package, NElaSsSEDA2-3-wp.inp, used in the WAPDEG simulation of the dripping exposure condition:

NElaSsSEDA2-3-ds.inp

TSPA-VA base-case mean alpha_f IX1 property set
line load no backfill at 50 yr using VA sand properties
sand invert using VA sand properties
snf, always drip, 100%, lta
Uncertainty/Variability=50/50 drip, 50th Percentile
Ti Gr7 2 cm Drip Shield EDA2-2

START OF PARAMETERS

3.09
10
NESf00noBF60cJ4220302.ds
130638, 0., 0.
NESf01noBF60cJ4220302.ds
445368, 0., 0.
NESf10noBF60cJ4220302.ds
34997, 0., 0.
NESf11noBF60cJ4220302.ds
288107, 0., 0.
NESf21noBF60cJ4220302.ds
59608, 0., 0.
NESf31noBF60cJ4220302.ds
19650, 0., 0.
NESf41noBF60cJ4220302.ds
10153, 0., 0.
NESf51noBF60cJ4220302.ds
3930, 0., 0.
NESf61noBF60cJ4220302.ds
4585, 0., 0.
NESf81noBF60cJ4220302.ds
2947, 0., 0.
1.0e-12, 2.0
75., 0.35
400, 965, 3100, 3100
1.0, 1.6, 1200
1.e4, 5.e4, 1.e5, 1.e6
304058394, F, F
0.0, 0.0
180.0, 180.0
Fixed
1.0
Fixed
1.0
Fixed
0.0

Version number of code
Number of alternate histories
History file 1
packs/history, T std, RH std
History file 2
packs/history, T std, RH std
History file 3
packs/history, T std, RH std
History file 4
packs/history, T std, RH std
History file 5
packs/history, T std, RH std
History file 6
packs/history, T std, RH std
History file 7
packs/history, T std, RH std
History file 8
packs/history, T std, RH std
History file 9
packs/history, T std, RH std
History file 10
packs/history, T std, RH std
Thickness of outer, inner barriers (cm)
% thick to fail CRM, frac variance to packs
Number of packs, patches/pack, pits/patch
Bin start time & end time (y), and # of bins
Output times (y) for cumul. pit penetrations
Random# seed, restart flag, ignore CAM variance
Max temp, RH change over a time step (C, %RH)
Angle defining top/bottom (degrees)
Distribution for fraction top seeing drips
Distribution parameter(s)
Distribution for fraction bottom seeing drips
Distribution parameter(s)
Distribution for dripping start time
Distribution parameter(s)
Fixed 1000000.0 T, F Fixed 51.0 1.0 [No Drip Model, CAM] CAMGeneral+PitMultiples Fixed 1.0e12 [No Drip Model, CRM] CRMGeneralRateOnly 3, 1.e+6 30.0 File gTi15050.cdf 60.0 File gTi25050.cdf 120.0 File gTi35050.cdf File A22TiTth.cdf File A22TiRHth.cdf File A22LCTth.cdf File A22TiRHth.cdf Fixed 100.0, 0.0 0.0 Fixed 1.0 Fixed 1.0 Fixed 1.0 [Neutral Drip Model, CAM] CAMGeneral+PitMultiples Fixed 1.0e12 [Neutral Drip Model, CRM] CRMGeneralRateOnly 3, 1.e+6 30.0 File gTi15050.cdf 60.0 File gTi25050.cdf 120.0 File gTi35050.cdf File A22TiTth.cdf File A22LCTth.cdf File A22TiRHth.cdf Fixed 100.0 Distribution for dripping stop time Distribution parameter(s) Neutral(T/F) water initially, new water (T/F) Distr for corrosion delay time Distribution parameter(s) Package variance share This segment always required CAM corrosion model for no drips Distribution for pit multiple Mean, StDev, Min, Max This segment always required CRM corrosion model for drips Number of dists (temps °C), max CRM rate Temp appropriate for dist #1 Distribution type for #1 Distribution parameter (s) Temp appropriate for dist #2 Distribution type for #2 Distribution parameter (mm/yr) Temp appropriate for dist #3 Distribution type for #3 Distribution parameter (mm/yr) This segment always required Distr for thermal protection temperature Distribution parameter(s) Dist type for humid-air initiation Distribution parameter(s) Dist type for humid-air/aqueous transition Distribution parameter(s) Galvanic protect depth %, % patches protected Spalling depth as a % of thickness Dist for multiple for CAM corrosion rate Distribution parameter(s) Dist for multiple for CRM corrosion rate Distribution parameter(s) Dist for multiple for CRM corrosion rate Distribution parameter(s) Pack variance share for multiples Required if any non-neutral drips can be seen CAM corrosion model for no drips Distribution for pit multiple Mean, StDev, Min, Max Required if any non-neutral drips can be seen CRM corrosion model for drips Number of dists (temps °C), max CRM rate Temp appropriate for dist #1 Distribution type for #1 Distribution parameter (s) Temp appropriate for dist #2 Distribution type for #2 Distribution parameter (mm/yr) Temp appropriate for dist #3 Distribution type for #3 Distribution parameter (mm/yr) Required if any non-neutral drips can be seen Distr for thermal protection temperature Distribution parameter(s) Dist type for humid-air initiation Distribution parameter(s) Dist type for humid-air/aqueous transition Distribution parameter(s)
Galvanic protect depth %, % patches protected
Spalling depth as a % of thickness
Dist for multiple for CAM corrosion rate
Distribution parameter(s)
Dist for multiple for CRM corrosion rate
Distribution parameter(s)
Pack variance share for multiples

NE1a5s5EDA2-3-wp.inp
TSPA-VA base-case mean alpha_f Ixl property set
line load no backfill at 50 yr using VA sand properties
sand invert using VA sand properties
snf, always drip, 10%, lta
Uncertainty/Variability=50/50 drip, 50th Percentile
Alloy 22 2 cm WP - EDA2-3

START OF PARAMETERS
3.09
10
NEsf00noBF60cj4220302.hst
130638, 0., 0.
NEsf01noBF60cj4220302.hst
445386, 0., 0.
NEsf10noBF60cj4220302.hst
34997, 0., 0.
NEsf11noBF60cj4220302.hst
28107, 0., 0.
NEsf21noBF60cj4220302.hst
59608, 0., 0.
NEsf31noBF60cj4220302.hst
19650, 0., 0.
NEsf41noBF60cj4220302.hst
10153, 0., 0.
NEsf51noBF60cj4220302.hst
3930, 0., 0.
NEsf61noBF60cj4220302.hst
4585, 0., 0.
NEsf81noBF60cj4220302.hst
2947, 0., 0.
1.0e-12, 2.0
75., 0.35
400, 889, 3100, 3100
1.0, 1.e6, 1200
1.e4, 5.e4, 1.e5, 1.e6
304058394, F, F
0.0, 0.0
180.0, 180.0
Fixed
0.1
Fixed
0.1
File
NE1a5s5EDA2-3-ds.cdf
Fixed
1000000.0
T, F
Fixed
51.0

Version number of code
Number of alternate histories
History file 1
packs/history, T std, RH std
History file 2
packs/history, T std, RH std
History file 3
packs/history, T std, RH std
History file 4
packs/history, T std, RH std
History file 5
packs/history, T std, RH std
History file 6
packs/history, T std, RH std
History file 7
packs/history, T std, RH std
History file 8
packs/history, T std, RH std
History file 9
packs/history, T std, RH std
History file 10
packs/history, T std, RH std
Thickness of outer, inner barriers (cm)
% thick to fail CRM, frac variance to packs
Number of packs, patches/pack, pits/patch
Bin start time & end time (y), and # of bins
Output times (y) for cumul. pit penetrations
Random# seed, restart flag, ignore CAM variance
Max temp, RH change over a time step (C, %RH)
Angle defining top/bottom (degrees)
Distribution for fraction top seeing drips
Distribution parameter(s)
Distribution for fraction bottom seeing drips
Distribution parameter(s)
Distribution for dripping start time
Distribution parameter(s)
Distribution for dripping stop time
Distribution parameter(s)
Neutral(T/F) water initially, new water (T/F)
Distr for corrosion delay time
Distribution parameter(s)
1.0
[No Drip Model, CAM]
CAMGeneral+PitMultiples
Fixed
1.0e12
[No Drip Model, CRM]
CRMGeneralRateOnly
3, 1.e+6
25.
File
gnd17550.cdf
50.
File
gnd27550.cdf
100.
File
gnd37550.cdf
[No Drip Features]
File
A22TiTTth.cdf
File
A22TiRTHth.cdf
Fixed
100.
0.0, 0.0
0.0
Fixed
1.0
Fixed
1.0
1.0
[Neutral Drip Model, CAM]
CAMGeneral+PitMultiples
Fixed
1.0e12
[Neutral Drip Model, CRM]
CRMGenrate+ArrheniusPit
3, 1.e+6
25.0
File
gC15050.cdf
50.0
File
gC25050.cdf
100.0
File
gC35050.cdf
Normal
11.275, 2.4495
Fixed
5.5494e+003
Fixed
0.5
[Neutral Drip Features]
File
A22TTTTth.cdf
File
A22LCTTth.cdf
File
A22TiRTHth.cdf
Fixed
Package variance share
This segment always required
CAM corrosion model for no drips
Distribution for pit multiple
Mean, StDev, Min, Max
This segment always required
CRM corrosion model for drips
Number of dists (temps), max CRM rate
Temp appropriate for dist #1
Distribution type for #1
Distribution parameter(s)
Temp appropriate for dist #1
Distribution type for #1
Distribution parameter(s)
Temp appropriate for dist #2
Distribution type for #2
Distribution parameter(s)
This segment always required
Distr for thermal protection temperature
Distribution parameter(s)
Dist type for humid-air initiation
Distribution parameter(s)
Dist type for humid-air/aqueous transition
Distribution parameter(s)
Galvanic protect depth %, % patches protected
Spalling depth as a % of thickness
Dist for multiple for CAM corrosion rate
Distribution parameter(s)
Dist for multiple for CRM corrosion rate
Distribution parameter(s)
Pack variance share for multiples
Required if any non-neutral drips can be seen
CAM corrosion model for no drips
Distribution for pit multiple
Mean, StDev, Min, Max
Required if any non-neutral drips can be seen
CRM corrosion model for drips
Number of dists (temps), max CRM rate
Temp appropriate for dist #1
Distribution type for #1
Distribution parameter(s)
Temp appropriate for dist #1
Distribution type for #1
Distribution parameter(s)
Temp appropriate for dist #2
Distribution type for #2
Distribution parameter(s)
Temp appropriate for dist #2
Distribution type for #2
Distribution parameter(s)
Temp appropriate for dist #2
Distribution type for #2
Distribution parameter(s)
Distr for thermal protection temperature
Distribution parameter(s).
Dist type for CRM LC T init
Distribution parameter
Dist type for humid-air initiation
Distribution parameter(s)
Dist type for humid-air/aqueous transition
Distribution parameter(s)

B00000000-01717-0210-00095 REV 00
24 08/24/99
<table>
<thead>
<tr>
<th>Distribution parameter(s)</th>
<th>Galvanic protect depth %, % patches protected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0, 0.0</td>
<td>Spalling depth as a % of thickness</td>
</tr>
<tr>
<td>0.0</td>
<td>Dist for multiple for CAM corrosion rate</td>
</tr>
<tr>
<td>Fixed</td>
<td>Distribution parameter(s)</td>
</tr>
<tr>
<td>1.0</td>
<td>Dist for multiple for CRM corrosion rate</td>
</tr>
<tr>
<td>Fixed</td>
<td>Distribution parameter(s)</td>
</tr>
<tr>
<td>1.0</td>
<td>Pack variance share for multiples</td>
</tr>
</tbody>
</table>

Procedurally, the WAPDEG code was executed by typing the name of the executable (i.e., wap309) on the command line and entering the name of the WAPDEG input file (i.e., NE1a5s5EDDA2-3-ds.inp or NE1A5s5EDDA2-3-wp.inp).

The "raw" output from a WAPDEG simulation consists of six files: a *.out file, *.pat file, *.bin file, *.crm file, *.cam file, and *.aux file (where "*" is the input file name prefix). The content and format of these files are discussed in the WAPDEG version 3.09 Software Routine Report (CRWMS M&O 1998b, Section 4.1). These files are also included in the electronic media supporting this calculation (CRWMS M&O 1999a, Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001). Only the *.out (drip shield / waste package curves), *.pat (cumulative number of patch penetrations for each drip shield / waste package), and *.bin (cumulative number of pit penetrations for each drip shield / waste package) files are used by Post308 to create the RIP input tables.

### 5.3 POST308 INPUTS

The input files discussed above are used by WAPDEG to produce drip shield / waste package degradation profiles. The drip shield / waste package degradation profiles resulting from the WAPDEG simulations are then read by the post processor, Post308, which generates a table in a format appropriate for input into RIP (Golder Associates 1998, pp. 7-22 through 7-25). The RIP input table contains:

1) The fraction of drip shields / waste packages failed versus time curve for the simulation,
2) The average number of pit penetrations per failed drip shield / waste package versus time curve, and
3) The average number of patch penetrations per failed drip shield / waste package versus time curve.

As identified earlier in this calculation, the drip shields are assumed to only undergo general corrosion processes, which result in "patch" perforations. As a result, for the drip shield, the above curves only reflect the results of "patch" perforations (i.e., Curve 2, above, for instance, will indicate no pit penetrations for the drip shields).

Procedurally, Post308 is executed in a Windows NT 4.0 MS-DOS prompt window within the same directory as the output files from WAPDEG (i.e., *.bin, *.pat, *.out). The program prompts the user for the particular filename prefix that is common to the WAPDEG simulation output.
files to be post processed. After the program post processes the WAPDEG output, it prompts the user to enter a file name for the RIP input table to be created. The RIP input tables were chosen to have the same prefix name as the corresponding WAPDEG input files with a *.rip extension. The output from the post processor consists of three files; *.asc, *.dat, and *.rip. The content and format of these files are discussed in the WAPDEG version 3.09 Software Routine Report (CRWMS M&O 1998b. Appendix D). These files are also included in the electronic media supporting this calculation (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001).

6. RESULTS

Since unqualified inputs were used in the development of the results presented in this section, they should be considered TBV. This document will not directly support any construction, fabrication, or procurement activity, and therefore, the inputs and outputs are not required to be procedurally controlled as TBV. However, any use of the data from this analysis for inputs into documents supporting construction, fabrication, or procurement is required to be controlled as TBV in accordance with appropriate procedures”. Furthermore, this calculation makes use of software (WAPDEG version 3.09 and Post308) that are unqualified (TBV-568).

All input and output files relevant to this calculation are included in the electronic media supporting this calculation (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001). For brevity, only selected files are reproduced in hardcopy form within this section.

The primary outputs of Mkhistory are the *.hst files used as input to WAPDEG for waste packages (or the *.ds files for drip shields). For reference, the contents of NEsf00noBF60cj4220302.hst (DTN: MO9906MWDWAP95.001) are:

1.000000  118.420000  0.476990
1.500000  123.510000  0.477980
2.000000  127.000000  0.464090
3.000000  132.860000  0.412230
4.000000  135.690000  0.395140
5.000000  137.300000  0.376960
6.000000  138.900000  0.341830
7.000000  138.950000  0.328030
8.000000  138.900000  0.322450
9.000000  138.500000  0.272700
10.000000 137.990000  0.272950
11.000000 137.540000  0.274280
12.000000 136.770000  0.277450
15.000000 133.790000  0.297110
20.000000 128.260000  0.343810
25.000000 122.930000  0.400420
26.000000 121.450000  0.417680
27.000000 119.840000  0.438270
30.000000 116.300000  0.487030
35.000000 112.210000  0.541860
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40.000000</td>
<td>106.730000</td>
<td>0.593570</td>
<td></td>
</tr>
<tr>
<td>50.000000</td>
<td>99.500000</td>
<td>0.665960</td>
<td></td>
</tr>
<tr>
<td>51.000000</td>
<td>163.560000</td>
<td>0.142580</td>
<td></td>
</tr>
<tr>
<td>52.000000</td>
<td>167.010000</td>
<td>0.127940</td>
<td></td>
</tr>
<tr>
<td>55.000000</td>
<td>165.420000</td>
<td>0.132900</td>
<td></td>
</tr>
<tr>
<td>60.000000</td>
<td>158.440000</td>
<td>0.153070</td>
<td></td>
</tr>
<tr>
<td>65.000000</td>
<td>147.740000</td>
<td>0.199900</td>
<td></td>
</tr>
<tr>
<td>70.000000</td>
<td>141.380000</td>
<td>0.237440</td>
<td></td>
</tr>
<tr>
<td>75.000000</td>
<td>134.110000</td>
<td>0.290220</td>
<td></td>
</tr>
<tr>
<td>76.000000</td>
<td>125.580000</td>
<td>0.375990</td>
<td></td>
</tr>
<tr>
<td>77.000000</td>
<td>117.180000</td>
<td>0.472370</td>
<td></td>
</tr>
<tr>
<td>80.000000</td>
<td>109.170000</td>
<td>0.509860</td>
<td></td>
</tr>
<tr>
<td>90.000000</td>
<td>103.300000</td>
<td>0.541670</td>
<td></td>
</tr>
<tr>
<td>100.000000</td>
<td>102.860000</td>
<td>0.557310</td>
<td></td>
</tr>
<tr>
<td>101.000000</td>
<td>102.630000</td>
<td>0.558710</td>
<td></td>
</tr>
<tr>
<td>105.000000</td>
<td>101.240000</td>
<td>0.567620</td>
<td></td>
</tr>
<tr>
<td>110.000000</td>
<td>99.260000</td>
<td>0.579610</td>
<td></td>
</tr>
<tr>
<td>120.000000</td>
<td>96.970000</td>
<td>0.598770</td>
<td></td>
</tr>
<tr>
<td>130.000000</td>
<td>92.630000</td>
<td>0.627640</td>
<td></td>
</tr>
<tr>
<td>140.000000</td>
<td>90.050000</td>
<td>0.641260</td>
<td></td>
</tr>
<tr>
<td>160.000000</td>
<td>86.450000</td>
<td>0.657680</td>
<td></td>
</tr>
<tr>
<td>180.000000</td>
<td>84.660000</td>
<td>0.670120</td>
<td></td>
</tr>
<tr>
<td>200.000000</td>
<td>82.700000</td>
<td>0.683460</td>
<td></td>
</tr>
<tr>
<td>220.000000</td>
<td>81.780000</td>
<td>0.692100</td>
<td></td>
</tr>
<tr>
<td>250.000000</td>
<td>80.510000</td>
<td>0.706170</td>
<td></td>
</tr>
<tr>
<td>300.000000</td>
<td>79.070000</td>
<td>0.726060</td>
<td></td>
</tr>
<tr>
<td>350.000000</td>
<td>77.940000</td>
<td>0.741460</td>
<td></td>
</tr>
<tr>
<td>400.000000</td>
<td>77.000000</td>
<td>0.756150</td>
<td></td>
</tr>
<tr>
<td>450.000000</td>
<td>76.240000</td>
<td>0.767850</td>
<td></td>
</tr>
<tr>
<td>500.000000</td>
<td>75.480000</td>
<td>0.779250</td>
<td></td>
</tr>
<tr>
<td>550.000000</td>
<td>74.680000</td>
<td>0.789700</td>
<td></td>
</tr>
<tr>
<td>600.000000</td>
<td>74.000000</td>
<td>0.798790</td>
<td></td>
</tr>
<tr>
<td>700.000000</td>
<td>72.770000</td>
<td>0.816210</td>
<td></td>
</tr>
<tr>
<td>800.000000</td>
<td>71.480000</td>
<td>0.830460</td>
<td></td>
</tr>
<tr>
<td>900.000000</td>
<td>70.280000</td>
<td>0.842800</td>
<td></td>
</tr>
<tr>
<td>1000.000000</td>
<td>69.180000</td>
<td>0.853930</td>
<td></td>
</tr>
<tr>
<td>1100.000000</td>
<td>68.340000</td>
<td>0.860220</td>
<td></td>
</tr>
<tr>
<td>1200.000000</td>
<td>67.530000</td>
<td>0.868380</td>
<td></td>
</tr>
<tr>
<td>1300.000000</td>
<td>66.700000</td>
<td>0.876340</td>
<td></td>
</tr>
<tr>
<td>1400.000000</td>
<td>65.790000</td>
<td>0.882320</td>
<td></td>
</tr>
<tr>
<td>1500.000000</td>
<td>64.790000</td>
<td>0.892320</td>
<td></td>
</tr>
<tr>
<td>1600.000000</td>
<td>64.090000</td>
<td>0.895420</td>
<td></td>
</tr>
<tr>
<td>1800.000000</td>
<td>62.830000</td>
<td>0.903290</td>
<td></td>
</tr>
<tr>
<td>2000.000000</td>
<td>61.530000</td>
<td>0.910920</td>
<td></td>
</tr>
<tr>
<td>2200.000000</td>
<td>60.530000</td>
<td>0.914560</td>
<td></td>
</tr>
<tr>
<td>2500.000000</td>
<td>59.120000</td>
<td>0.920750</td>
<td></td>
</tr>
<tr>
<td>3000.000000</td>
<td>57.250000</td>
<td>0.927120</td>
<td></td>
</tr>
<tr>
<td>3500.000000</td>
<td>55.820000</td>
<td>0.927860</td>
<td></td>
</tr>
<tr>
<td>4000.000000</td>
<td>54.590000</td>
<td>0.928780</td>
<td></td>
</tr>
<tr>
<td>4500.000000</td>
<td>53.530000</td>
<td>0.929920</td>
<td></td>
</tr>
<tr>
<td>5000.000000</td>
<td>52.560000</td>
<td>0.929820</td>
<td></td>
</tr>
<tr>
<td>6000.000000</td>
<td>50.810000</td>
<td>0.932420</td>
<td></td>
</tr>
<tr>
<td>7000.000000</td>
<td>49.330000</td>
<td>0.934190</td>
<td></td>
</tr>
<tr>
<td>8000.000000</td>
<td>47.980000</td>
<td>0.935010</td>
<td></td>
</tr>
<tr>
<td>10000.000000</td>
<td>45.600000</td>
<td>0.938770</td>
<td></td>
</tr>
<tr>
<td>15000.000000</td>
<td>40.480000</td>
<td>0.949040</td>
<td></td>
</tr>
<tr>
<td>20000.000000</td>
<td>36.890000</td>
<td>0.956580</td>
<td></td>
</tr>
<tr>
<td>30000.000000</td>
<td>31.820000</td>
<td>0.967370</td>
<td></td>
</tr>
<tr>
<td>40000.000000</td>
<td>29.170000</td>
<td>0.975220</td>
<td></td>
</tr>
<tr>
<td>50000.000000</td>
<td>27.530000</td>
<td>0.978960</td>
<td></td>
</tr>
<tr>
<td>60000.000000</td>
<td>26.340000</td>
<td>0.983710</td>
<td></td>
</tr>
</tbody>
</table>
The other outputs of Mkhistory are appended to the EDA2-3lta.mk file and consist of the history file input segment (i.e., all the text in the input file lines from “10 Number of alternate histories” to “2947, 0., 0. packs/history, T std, RH std” in the WAPDEG input files used), documentation of the sum of the fraction and total number of waste packages represented by each history, and a text segment that could be used to graph all of the histories processed. These files are contained in the electronic media supporting this calculation (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3) (DTN: MO9906MWDWAP95.001).

For reference the RIP input table NE1a5s5EDA2-3-wp.rip (DTN: MO9906MWDWAP95.001) is shown below.

```
! From wapdeg file: NE1a5s5EDA2-3-wp
! From wapdeg version: 3.09
! Postprocessor: post308
! NE1a5s5EDA2-3-wp.inp
!
! TSPA-VA base-case mean alpha_f property set
! line load no backfill at 50 yr using VA sand properties
! sand invert using VA sand properties
! snf, always drip, 10%, lta
! Uncertainty/Variability=50/50 drip, 50th Percentile
! Alloy 22 2 cm WP - EDA2-3
!
! START OF PARAMETERS
2
3 82
1 2 3
0.0000
107150.9305
119086.6662
139698.5392
149630.1764
160395.3837
171798.4289
176810.1512
184101.6000
189484.4600
198384.2526
201836.6364
205355.9050
210139.2585
213796.2090
```
The RIP input table consists of a column of items in years (the first single column of data) followed by three columns consisting of the fraction of waste packages failed, the number of pit penetrations per failed waste package, and the number of patch penetrations per failed waste package. These last three columns all share the same time grid (the first single column of data).

<table>
<thead>
<tr>
<th>Year</th>
<th>Failure Fraction</th>
<th>Pit Penetrations</th>
<th>Patch Penetrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6139</td>
<td>0.0000</td>
<td>5.4317</td>
<td></td>
</tr>
<tr>
<td>0.6245</td>
<td>0.0000</td>
<td>5.6681</td>
<td></td>
</tr>
<tr>
<td>0.6394</td>
<td>0.0000</td>
<td>5.6932</td>
<td></td>
</tr>
<tr>
<td>0.6479</td>
<td>0.0000</td>
<td>5.7855</td>
<td></td>
</tr>
<tr>
<td>0.6600</td>
<td>0.0000</td>
<td>5.9529</td>
<td></td>
</tr>
<tr>
<td>0.6739</td>
<td>0.0000</td>
<td>6.0692</td>
<td></td>
</tr>
<tr>
<td>0.6865</td>
<td>0.0000</td>
<td>6.1251</td>
<td></td>
</tr>
<tr>
<td>0.6960</td>
<td>0.0000</td>
<td>6.1856</td>
<td></td>
</tr>
<tr>
<td>0.7015</td>
<td>0.0000</td>
<td>6.3943</td>
<td></td>
</tr>
<tr>
<td>0.7193</td>
<td>0.0000</td>
<td>6.4648</td>
<td></td>
</tr>
<tr>
<td>0.7297</td>
<td>0.0000</td>
<td>6.6904</td>
<td></td>
</tr>
<tr>
<td>0.7432</td>
<td>0.0000</td>
<td>6.8794</td>
<td></td>
</tr>
<tr>
<td>0.7506</td>
<td>0.0000</td>
<td>6.9679</td>
<td></td>
</tr>
<tr>
<td>0.7588</td>
<td>0.0000</td>
<td>7.1850</td>
<td></td>
</tr>
<tr>
<td>0.7698</td>
<td>0.0000</td>
<td>7.5726</td>
<td></td>
</tr>
<tr>
<td>0.7793</td>
<td>0.0000</td>
<td>7.9550</td>
<td></td>
</tr>
<tr>
<td>0.7911</td>
<td>0.0000</td>
<td>8.2881</td>
<td></td>
</tr>
<tr>
<td>0.8032</td>
<td>0.0000</td>
<td>8.8295</td>
<td></td>
</tr>
<tr>
<td>0.8178</td>
<td>0.0000</td>
<td>9.2137</td>
<td></td>
</tr>
<tr>
<td>0.8237</td>
<td>0.0000</td>
<td>9.3854</td>
<td></td>
</tr>
<tr>
<td>0.8369</td>
<td>0.0000</td>
<td>9.7134</td>
<td></td>
</tr>
<tr>
<td>0.8448</td>
<td>0.0000</td>
<td>10.5940</td>
<td></td>
</tr>
<tr>
<td>0.8565</td>
<td>0.0000</td>
<td>11.2561</td>
<td></td>
</tr>
<tr>
<td>0.8684</td>
<td>0.0000</td>
<td>11.6832</td>
<td></td>
</tr>
<tr>
<td>0.8809</td>
<td>0.0000</td>
<td>12.0643</td>
<td></td>
</tr>
<tr>
<td>0.8950</td>
<td>0.0000</td>
<td>12.3240</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 presented below is a graph (derived from the NE1a5s5EDA2-3-ds.dat (for the drip shields) and NE1a5s5EDA2-3-wp.dat (for the waste packages) files) of the first breach (pit or patch) curves for the drip shields and waste packages. There is no localized corrosion allowed of the drip shields (see Assumption 3.9) and no localized corrosion of the waste packages occurs. Two conditions are necessary for localized corrosion of the waste packages to initiate: 1) dripping water, and 2) the exposure temperature must exceed the temperature threshold for the initiation of localized corrosion (as given in A22TTh.cdf, see Assumption 3.18). Presumably, these two conditions were never simultaneously met and localized corrosion degradation of the waste packages never initiated. Hence the first breach curve of the drip shields and waste packages is equivalent to their first patch curve.
Figure 1. Fraction of Drip Shields and Waste Packages Failed vs. Time. LADS – EDA II-3, 50 Yr. Ventilation, No Backfill, Always Drip.
Presented below is a graph of the average number of patch penetrations per failed waste package (derived from the NE1a5s5EDA2-3-wp.asc file):

Figure 2. Average Number of Patch Penetrations vs. Time. LADS – EDA ll-3, 50 Yr.
Ventilation, No Backfill, Always Drip

The first breach curve for the waste package and the average number of patch penetrations per failed waste package curve are also represented in the RIP input table, NE1a5s5EDA2-3-wp.rip.
7. REFERENCES


8. ATTACHMENTS

<table>
<thead>
<tr>
<th>Attachment Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Mkhistory</td>
</tr>
<tr>
<td>II</td>
<td>Titanium Grade 7 General Corrosion Rates</td>
</tr>
</tbody>
</table>
ATTACHMENT I - MKHISTORY

CONTENTS

1. GENERAL DESCRIPTION................................................................. I-2
2. DESCRIPTION OF CODE AND ALGORITHMS USED............................ I-2
3. DESCRIPTION OF TEST CASE.......................................................... I-5
   3.1 TEST CASE INPUT........................................................................ I-6
4. RANGE OF INPUT PARAMETER VALUES OVER WHICH RESULTS WERE
   VERIFIED........................................................................................ I-7
   4.1 IDENTIFICATION OF LIMITATIONS ON SOFTWARE ROUTINE OR
       VALIDITY..................................................................................... I-7
5. REFERENCE LIST OF ALL DOCUMENTATION RELEVANT TO THE
   QUALIFICATION............................................................................... I-7
6. COMPUTER LISTING OF SOURCE CODE............................................. I-8
1. GENERAL DESCRIPTION

The software routine Mkhistory was written to create "time-history" files for the temperature and relative humidity, typically applicable to the waste package surface, drip shield surface, or drift wall, which are used as input to the stochastic waste package degradation simulator WAPDEG (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09)). Although Version 3.09 of the WAPDEG code is referenced here, the output from Mkhistory Version 1.01 could be used by any version of WAPDEG created to date. Mkhistory was developed and tested in the Windows NT 4.0 operating system. This code was developed to enhance traceability of data manipulation and to minimize potential error induced by human data manipulation. The details of the "time-history" file format are discussed in (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), p. 28). Mkhistory also:

1) produces a text file segment (containing the history file names and fraction of the total number of waste packages to which each history is to be applied) suitable for importation into a WAPDEG input (*.inp) file (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), p. 28).

2) prints, to both the screen and an output file, the fractions of the total number of waste packages to which each history is to be applied as well as the products of these fractions with the total number of waste packages, i.e., the number of waste packages to which each history is to be applied.

3) creates a columnar file of time, temperature, and relative humidity data for each history file processed for use in graphing the data.

Mkhistory is a FORTRAN program 206 lines in extent. It conforms to the FORTRAN 90 standard and is thus highly portable. Mkhistory has been compiled with Digital FORTRAN 5.0 in the Windows/PC environments. Mkhistory is designed to run independently of any other software application.

All input and output files discussed in this document are included in the accompanying electronic media (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3, Attachment-I directory) (DTN: MO9906MWDWAP95.001).

2. DESCRIPTION OF CODE AND ALGORITHMS USED

The bulk of Mkhistory's coding is devoted to reading values from text files of a certain format (see below) and writing these values to other text files with no calculations performed, i.e., reformatting of data values. Mkhistory does perform a few very simple calculations:

1) it multiplies the fraction of the total number of waste packages to which each history is to be applied by a user input total number of waste packages to obtain the number of waste packages to which each history is to be applied.
2) it sums the fraction of the total number of waste packages and the number of waste packages to which each history is to be applied.

Mkhistory first asks the user to enter the name of a file which lists the files to be processed (the "list-file" name) and the number of waste packages. The list-file used for testing of Mkhistory (mktest.mk) is shown below:

<table>
<thead>
<tr>
<th>number of files, columns, and columns to print</th>
<th>print specified columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,7,3</td>
<td>CC_dhlw_mean_02_sand_BF_j_22_03_data CCdhlw02sandBFj2203.hst</td>
</tr>
<tr>
<td>1,2,3</td>
<td>CC_dhlw_mean_12_sand_BF_j_22_03_data CCdhlw12sandBFj2203.hst</td>
</tr>
<tr>
<td></td>
<td>CC_dhlw_mean_22_sand_BF_j_22_03_data CCdhlw22sandBFj2203.hst</td>
</tr>
<tr>
<td></td>
<td>CC_dhlw_mean_32_sand_BF_j_22_03_data CCdhlw32sandBFj2203.hst</td>
</tr>
<tr>
<td></td>
<td>CC_dhlw_mean_42_sand_BF_j_22_03_data CCdhlw42sandBFj2203.hst</td>
</tr>
<tr>
<td></td>
<td>CC_dhlw_mean_52_sand_BF_j_22_03_data CCdhlw52sandBFj2203.hst</td>
</tr>
</tbody>
</table>

mktest.mk's first line contains an integer representing the number of files to be processed (six in this case), the number of columns of data in each file to be processed (seven in this case), and the number of columns to print to the output file(s) (three in this case). The next input line contains the column numbers (from the files to be processed) that are to be read and printed to the output file(s). The maximum number of files to be processed is 999 in Mkhistory (see Section 4.1). The next input lines (number-of-files-to-be-processed of them) consist of two columns of text strings; the first column contains the name of the text file to be processed, and the second column contains the file name to which the corresponding processed results are written. For example, the contents of CC_dhlw_mean_02_sand_BF_j_22_03_data are:

```
file: CC_dhlw_mean_02_sand_BF_j_22_03_data
RH bin 0 of 9
temperature bin 2 of 2
zone 6 of 6: Center Center (CC)

12/97 PA property set
line load
sand backfill
19 LTA infiltration (42.06 mm/yr avg infiltration)
area of zone CC = 788649.0 (m²)
fraction of zone CC represented by data set = 0.333864
area of repository represented by data set = 263301.50 (m²)

time(years) temp(C) RH Xair Sliquid dw T dw RH
0.0 18.04 1.000000 0.985620 0.909230 18.039000 0.998080
1.0 165.35 0.378930 0.985570 0.9097270 131.580002 0.945950
1.5 170.97 0.354500 0.985570 0.983260 137.630005 0.850510
2.0 179.22 0.272290 0.985570 0.972670 146.990005 0.611240
2.5 188.60 0.172870 0.985570 0.907560 157.190002 0.365860
3.0 198.94 0.097367 0.985570 0.745310 167.990005 0.196260
```

The contents of the corresponding file (CCdhlw02sandBFj2203.hst) containing the processed results are:
with similar results for the remaining 5 files specified in mktest.mk. As can be seen from these files, no calculations are performed in creating CCdhlw02sandBFj2203.hst, only reformatting of data. Mkhistory scans the file to be processed for a line that starts with “time”; skips the next line; then reads Columns 1, 2, and 3 from CC_dhlw_mean_02_sand_BF_j_22_03_data and echoes them to CCdhlw02sandBFj2203.hst. CCdhlw02sandBFj2203.hst is a file with a format suitable for use as a WAPDEG time, temperature, relative humidity “history” file (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), p. 28).

As mentioned above, Mkhistory asks the user for the total number of waste packages. If the value entered is less than or equal to zero or greater than 1,000,000, the total number of waste packages is defaulted to 1,000,000. Mkhistory scans the text file to be processed (i.e., CC_dhlw_mean_02_sand_BF_j_22_03_data) for a line starting with “area of zone,” goes to the next line, then reads a real number (starting at Column 46). This is the fraction of the total number of waste packages to which the history file is to be applied. The user-input total number of waste packages then multiplies this real number and a WAPDEG input file segment is appended to the list-file (i.e., mktest.mk). If the total number of waste packages were chosen to be 1,000,000, the following segment would be appended to mktest.mk:

<table>
<thead>
<tr>
<th>History file</th>
<th>Number of alternate histories</th>
</tr>
</thead>
<tbody>
<tr>
<td>History file 1</td>
<td>packs/history, T std, RH std</td>
</tr>
<tr>
<td>History file 2</td>
<td>packs/history, T std, RH std</td>
</tr>
<tr>
<td>History file 3</td>
<td>packs/history, T std, RH std</td>
</tr>
<tr>
<td>History file 4</td>
<td>packs/history, T std, RH std</td>
</tr>
<tr>
<td>History file 5</td>
<td>packs/history, T std, RH std</td>
</tr>
<tr>
<td>History file 6</td>
<td>packs/history, T std, RH std</td>
</tr>
</tbody>
</table>

Here, the product of the user-input total number of waste packages and the fraction of the total number of waste packages to which each history is to be applied (i.e., 333864) appears as the first value on the line following the file name containing the processed WAPDEG time, temperature, relative humidity data. This value is rounded to the nearest whole integer. This text segment can be readily imported into a WAPDEG input file (CRWMS M&O 1998b. Software Routine Report for WAPDEG (Version 3.09), p. 28) for use in analyses.

Mkhistory also appends to the list-file the fraction of the total number of waste packages to which each history is to be applied and the results of the calculation of the product of the user-input total number of waste packages and the fraction of the total number of waste packages to which each history is to be applied.
number of waste packages and the fraction of the total number of waste packages to which each history is to be applied. Mkhistory also sums these fractions and products for visual verification by the user that the fractions sum to approximately 1 and the products sum to the user-input total number of waste packages, i.e.:

<table>
<thead>
<tr>
<th>History File</th>
<th>Fraction</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.333864</td>
<td>333864</td>
</tr>
<tr>
<td>2</td>
<td>0.148505</td>
<td>148505</td>
</tr>
<tr>
<td>3</td>
<td>0.017580</td>
<td>17580</td>
</tr>
<tr>
<td>4</td>
<td>0.021975</td>
<td>21975</td>
</tr>
<tr>
<td>5</td>
<td>0.290073</td>
<td>290073</td>
</tr>
<tr>
<td>6</td>
<td>0.187913</td>
<td>187913</td>
</tr>
</tbody>
</table>

Totals are: 0.999910 and 999910

Running mkhistory version 1.01
Using list-file: mktest.mk

Also, to facilitate further traceability, the Mkhistory version number and list-file name are appended to the list-file, as shown above.

Mkhistory also appends to the list-file a text segment that is convenient for graphing the time history of the temperature and relative humidity for each processed file, i.e., a text segment like the one below is appended to the list-file.

<table>
<thead>
<tr>
<th>h001c01</th>
<th>h001c02</th>
<th>h001c03</th>
<th>h002c01</th>
<th>h002c02</th>
<th>h002c03</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>165.350000</td>
<td>0.378930</td>
<td>1.000000</td>
<td>170.040000</td>
<td>0.390000</td>
</tr>
<tr>
<td>1.500000</td>
<td>170.970000</td>
<td>0.354500</td>
<td>1.500000</td>
<td>176.780000</td>
<td>0.347130</td>
</tr>
<tr>
<td>2.000000</td>
<td>179.220000</td>
<td>0.372290</td>
<td>2.000000</td>
<td>186.340000</td>
<td>0.245050</td>
</tr>
<tr>
<td>2.500000</td>
<td>188.600000</td>
<td>0.172870</td>
<td>2.500000</td>
<td>196.470000</td>
<td>0.134700</td>
</tr>
<tr>
<td>3.000000</td>
<td>196.940000</td>
<td>0.097367</td>
<td>3.000000</td>
<td>206.950000</td>
<td>0.079447</td>
</tr>
</tbody>
</table>

The hxxxxyy column label signifies that the data was extracted from column yy of the xxxth file processed by Mkhistory. Effectively, the list-file serves as an input and output file as information is appended to it.

3. DESCRIPTION OF TEST CASE

Because Mkhistory is a very simple program that performs few calculations, relatively simple testing is performed to verify the program execution and results. The testing approach involves comparing the results of executing Mkhistory with the list-file mktest.mk and comparing the results with hand calculations and visual inspection. Execution of the list-file mktest.mk and verification of its output by comparison with the files on the accompanying electronic media (CRWMS M&O 1999a. Supporting Media for RIP Input Tables From WAPDEG For LA Design Selection: Enhanced Design Alternative II-3, Attachment-Ihand directory) (DTN: MO9906MWDWAP95.001) are considered sufficient installation and checkout steps for successful first use of Mkhistory on a new platform, operating system or new user's location.
3.1 TEST CASE INPUT

The test case involves the use of the list-file mktest.mk, the listing of which is shown below:

<table>
<thead>
<tr>
<th>Number of Files, Columns, and Columns to Print</th>
<th>Print Specified Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,7,3</td>
<td></td>
</tr>
<tr>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>CC_dhlw_mean_02_sand_BF_j_22_03_data</td>
<td>CCdhlw02sandBFj2203.hst</td>
</tr>
<tr>
<td>CC_dhlw_mean_12_sand_BF_j_22_03_data</td>
<td>CCdhlw12sandBFj2203.hst</td>
</tr>
<tr>
<td>CC_dhlw_mean_22_sand_BF_j_22_03_data</td>
<td>CCdhlw22sandBFj2203.hst</td>
</tr>
<tr>
<td>CC_dhlw_mean_32_sand_BF_j_22_03_data</td>
<td>CCdhlw32sandBFj2203.hst</td>
</tr>
<tr>
<td>CC_dhlw_mean_42_sand_BF_j_22_03_data</td>
<td>CCdhlw42sandBFj2203.hst</td>
</tr>
<tr>
<td>CC_dhlw_mean_52_sand_BF_j_22_03_data</td>
<td>CCdhlw52sandBFj2203.hst</td>
</tr>
</tbody>
</table>

After reading mktest.mk, Mkhistory will read the 6 text files to be processed (the file names in the first column of mktest.mk) and extract the specified columns from the files to be processed, and echo their contents to the output files (the file names in the second column of mktest.mk).

Comparison of these output files with the text files to be processed shows that the data in Columns 1, 2, and 3 of the 7 data columns in the text files to be processed have been correctly reformatted (copied) to the output files. Furthermore, the data in Columns 1, 2 and, 3 of the 7 data columns in the text files to be processed have been correctly copied to the end of the list-file, mktest.mk. From these visual inspections, one can conclude that the data reformatting by Mkhistory is being correctly executed.

Visual inspection may also be used to verify that the fraction of the total number of waste packages to which the corresponding history file is to be applied has been correctly copied to the list-file (in the second column in the third text segment in mktest.mk) and that multiplication by the user-input total number of waste packages (1,000,000 in this case) has been correctly executed (this product is shown in the third column in the text third segment in mktest.mk). Visual inspection can also be used to verify the contents of the second text segment of mktest.mk, the “Number of alternate histories,” has been correctly copied from the first line of the first text segment in mktest.mk; the processed filenames have been correctly copied from the second column of the first text segment in mktest.mk; and the “packs/history” have been correctly calculated as shown in the third column in the third text segment in mktest.mk.

The values requiring hand calculation verification are the sum of the fractions of the total number of waste packages to which each history file is to be applied and the sum of the products of the user-input total number of waste packages (1,000,000 in this case) and the fraction of the total number of waste packages to which each history is to be applied. These values appear on line one (1) of the fourth text segment in the list-file mktest.mk (“Totals are: ...”). The values quoted agree with hand calculations. It is up to the Mkhistory user’s discretion as to whether the totals obtained (0.99991000... and 999910) are acceptably close enough to the user’s desired values (typically 1.00... and the user-input total number of waste packages (1,000,000 in this case)).
4. RANGE OF INPUT PARAMETER VALUES OVER WHICH RESULTS WERE VERIFIED

As Mkhistory does very few calculations, the valid range of input parameters is largely determined by the limitations discussed in the next section. Mkhistory has been executed with list-files specifying as many as 40 text files to be processed. Assuming the text files to be processed are correctly formatted, as discussed previously (Section 2.1) and in the next section, and the limitations discussed in the next section are not violated, Mkhistory will execute properly.

4.1 IDENTIFICATION OF LIMITATIONS ON SOFTWARE ROUTINE OR VALIDITY

4.1.1 The list-file name must be less than 40 characters, i.e., only the first 40 characters of the name will be read.

4.1.2 The total number of text files to be processed (and hence the number of processed files produced) by Mkhistory is limited to 999.

4.1.3 The total number of rows of data (rows appearing after the line beginning with “time”) in any text file to be processed must be less than 500.

4.1.4 The file name of each text file to be processed must be no more than 128 characters and the file name of each created history file must be no more than 30 characters, i.e., the history file names that appears in the WAPDEG input file segment (appended to the list-file) is limited to 30 characters.

4.1.5 The total number of waste packages (user-input) can be an integer no greater than 1,000,000 and no less than 1. If the user enters a value greater than 1,000,000 or less than 1, a default value of 1,000,000 is assumed.

4.1.6 Each text file to be processed must contain a line starting with “area of zone” immediately followed by a line containing a real value at column 46. The real value is to occupy a field width of 9 spaces and 6 digits will appear after the decimal place (i.e., this value is read with the FORTRAN format statement “format(45x, f9.6).”

4.1.7 The line starting with “area of zone” and its following line must be followed (not necessarily immediately) by a line starting with “time” which is followed with the columnar data.

5. REFERENCE LIST OF ALL DOCUMENTATION RELEVANT TO THE QUALIFICATION

6. COMPUTER LISTING OF SOURCE CODE

PROGRAM mkhistory
   c
   c This program reads a list of drift-scale thermal
   c hydrologic model result files with matching history
   c file names; produces the history files; creates the
   c WAPDEG history file segment; and creates a listing
   c of all the histories suitable for graphing
   c purposes.
   c
   c NH is the maximum number of histories to be read
   c NR is the maximum number of rows in a history file
   c NC is the maximum number of columns in a history file
   c NP is the default maximum number of waste packages
   c NLINE is the length of a line read
   c
   IMPLICIT NONE
   INTEGER NH, NR, NC, NP, NLINE
   PARAMETER (NH = 999, NR = 500, NC = 50)
   PARAMETER (NP = 1000000, NLINE = 160)
   INTEGER listfid, datafid, hstyfid, numpack, numhst
   INTEGER i, j, k, nrows(NH), ifrac(NH), totalifrac
   INTEGER numcol, npcol, pcol(NC)
   DOUBLE PRECISION dat(NC,NR,NH)
   DOUBLE PRECISION frac(NH), totalfrac
   character ver*lO, line*NLINE
   character listfl*40, datafl*NLINE(NH), hstyfl*NLINE(NH)
   c
   c Initialize values
   c
   3000 format(A160)
   ver = '1.01'
   listfid = 31
   datafid = 32
   hstyfid = 33
   ifrac = -999
   frac = -999.99
   totalifrac = 0
   totalfrac = 0.D0
   c
   c Get the names of the data files to post process and the history
   c files to create
   c
   write(*,*) 'Enter the list-file name:'
   read(*,*) listfl
   write(*,*) 'Enter the total number of waste packages:'
   read(*,*) numpack
   c
   c Default numpack to get all significant digits from fractions
   c
   if ((numpack .le. 0) .OR. (numpack .ge. NP)) then
      numpack = NP
write(*,*) 'Number of waste packages defaulted to:', numpack
end if
write(*,*)

The first line of the list-file should contain the number
of file names that will follow (less than NH), the number
of columns in each file, and the number of columns to reprint.
The second line should contain the list of column numbers to
reprint.

C
OPEN (listfid, FILE = listfl, STATUS = 'OLD')
read (listfid,*) numhst,numcol,npcol
if (numhst .gt. NH) then
  write(*,*) 'Error: Number of histories too many'
  write(*,*) 'Increase NH and recompile'
  STOP
end if
if (numcol .gt. NC) then
  write(*,*) 'Error: Number of columns too many'
  write(*,*) 'Increase NC and recompile'
  STOP
end if
read (listfid,*) (pcol(i),i=1,npcol)

C
Read the file names and then open each file.
Get the fraction of waste packages in the line after the
phase 'area of zone' in the 46 position
Read in the data columns after the line starting with
the time label

do i = 1, numhst
  read(listfid,3000) line
  CALL getfilenames(line, NLINE, datafl(i), hstyfl(i))
  OPEN (datafid, FILE = datafl(i), STATUS = 'OLD')
  read(datafid,3000) line
  do while (line(1:4).NE. 'time')
    read (datafid, 3000) line
    if (line(1:12).EQ. 'area of zone') then
      read(datafid, 2005) frac(i)
  2005 format(45x,f9.6)
  end if
  end do
  j = 1
  do while (j .le. NR)
    read(datafid,*, end = 101) (dat(k,j,i),k=1,numcol)
    j = j+1
  101 continue
  nrows(i) = j-1
  CLOSE(datafid)
end do

C
Create history files and history segment for WAPDEG input file
First row (time = 0) is not printed
C
write(listfid,*)
write(listfid,2002) numhst
2002 format(i3,27x,'(Number of alternate histories')
do i = 1, numhst
  OPEN (hstyfid, FILE = hstyfl(i))
do j = 2, nrows(i)
write(hstyfid,2012) (dat(pcol(k),j,i),k=1,npcol)
end do
write(hstyfid,*)
write(listfid,2007) hstyfl(i), i
format(A30,'|History file',I3)
ifrac(i) = int(numpack*frac(i) + 0.5)
write(listfid,2008) ifrac(i)
format(I9,' , 0., 0.,13x,'|packs/history, T std, RH std')
CLOSE(hstyfid)
end do
write(listfid,*)
C  c Print fraction information (to the screen and list-file)
C  do i = 1, numhst
write(*,2009) i, frac(i), ifrac(i)
write(listfid,2009) i, frac(i), ifrac(i)
totalifrac = totalifrac + ifrac(i)
totalfrac = totalfrac + frac(i)
format(1x,'History File',I3,1x,f15.6,5x,I9)
end do
C  write(*,2010) totalfrac,totalifrac
write(*,*) 'Running mkhistory version '//ver
write(*,*) 'Using list-file: '//listfl
C  write(listfid,2010) totalfrac,totalifrac
write(listfid,*)'Running mkhistory version '//ver
write(listfid,*)'Using list-file: '//listfl
format(1x,'Totals are:',5x,f15.6,' and ',I9)
C  c Create listing for graphing purposes (column widths of 16)
C  write(listfid,2011) ((~h~,i,'c~,pcol(k),k=1,npcol),i=1,numhst)
format(198(9xtA1,13.3,A1,I2.2))
do j = 2, nrows(1)
write(listfid,2012) ((dat(pcol(k),j,i),k=1,npcol),i=1,numhst)
format(198(1x,f15.6))
C  c Pause program before completing
C  write(*,*) 'Press return to continue'
read (*,*)
CLOSE(listfid)
END !PROGRAM mkhistory

SUBROUTINE getfilenames(line, linesize, datafl, hstyfl)
C  Find the positions in line where the file names are.
C  Input : line, linesize
C  Output: datafl, hstyfl
C  Local : i, starthst, endhst, startdat, enddat
C  Arguments
C
IMPLICIT NONE
character line(*), datafl(*), hstyfl(*)
integer linesize
Local variables

integer i, starthst, endhst, startdat, enddat

Find the positions in line where the file names are.

i = 1
do while (line(i:i) .eq. ' ')
   i = i + 1
end do
startdat = i

end do

enddat = i - 1

end do

starthst = i

end do

endhst = i - 1

datafl = line(startdat:enddat)

hstfl = line(starthst:endhst)

RETURN
END !SUBROUTINE getfilenames
Attachment II - TITANIUM GRADE 7 GENERAL CORROSION RATES

This worksheet documents the creation of the general corrosion rate cumulative distribution functions applicable to a titanium grade 7 alloy at 30, 60, and 120°C. The corrosion rate distributions are defined by Revised Regression Analysis B of a recent communication on titanium corrosion models (CRWMS M&O 1999d. Design Input Transmittal for License Application Design Selection Phase 2 Enhanced Design Alternatives Input on I) Temperature and Relative Humidity Thresholds for Various Corrosion Modes of Alloy 22 And Ti-7 and 2) Cladding Degradation Due to Elevated Fuel Rod Temperatures Caused By the Use of Backfill or Higher Thermal Loading, Item 1 p. 1/3 Response 1 and Item 2 p. 4/13). The function \( r(T) \) below models the median corrosion rate (mm/yr) at temperature, \( T \) (°C). The variation around this median corrosion rate is specified as a normal distribution truncated at ±3s, with 50% uncertainty and 50% variability. \( s \) is the given model standard deviation of the general corrosion rate distributions.

Cumulative distribution function (cdf) tables (with 201 entries) of the full corrosion rate distributions are created below. Then cdf tables are created and printed out that represent just variability centered at the median corrosion rate due to uncertainty.

\[
r(T) := 10^{-6} \cdot \exp\left(2.4070 - \frac{118.91}{T + 273.15} + 0.37673 \cdot 10^{-2.7} + 0.9449 \cdot 0 + 1.0239 \cdot 1\right)
\]

\[
s := 1.7146
\]

\[
N := 200 \quad i := 0..N
\]

\[
z_i := -3 + \frac{i \cdot 6}{N}
\]

\[
p := \frac{\text{cnorm}(z) - \text{cnorm}(-3)}{\text{cnorm}(3) - \text{cnorm}(-3)}
\]

\[
gTi1 := r(30) \cdot \exp(s \cdot z)
gTi2 := r(60) \cdot \exp(s \cdot z)
gTi3 := r(120) \cdot \exp(s \cdot z)
\]

- Note, all vectors are of size \((N+1)\).
- The \( z \)-values range from -3 to +3 with a spacing of 0.03.
- \( p \) is a vector of probabilities corresponding to the \( z \)-values for a standard normal distribution truncated at ±3 standard deviations.
- The vector \( gTi_x \) (where \( x \) may be 1, 2, or 3) are general corrosion rates (mm/yr) with standard deviation \( s \), corresponding to the \( p \)-values for temperatures 30, 60, and 120°C, respectively.
Range of values:
\( \min(gTi1) = 1.2192 \cdot 10^{-7} \)
\( \text{median}(gTi2) = 2.1644 \cdot 10^{-5} \)
\( \max(gTi3) = 3.9167 \cdot 10^{-3} \)

The function, \( \text{slnvar}(x,p,wtu,qu) \), below partitions the variance of the discrete univariate distribution given by the cdf table of rate values in \( x \) and cumulative probabilities in \( p \). By matching probability values we create a table of standard normal score values matched with natural log rate values. This table is then used to lookup rate values that correspond to the Gaussian variance partitioning of the standard normal for the given uncertain variability (\( wtu \)) and quantile (\( qu \)) both expressed as fractions. Note, \( \text{slnvar} \) is an acronym: split \( \ln \) (natural log) variance.

\[
\text{slnvar}(x,p,wtu,qu) :=
\begin{align*}
\text{wtv} & \leftarrow 1 - wtu \\
zu & \leftarrow \sqrt{wtu \cdot \text{nqnorm}(qu,0,1)} \\
\text{for } i & \in 0..\text{length}(x) - 1 \\
z_i & \leftarrow -\infty \text{ if } p_i=0 \\
& \infty \text{ if } p_i=1 \\
& \text{qnorm}(p_i,0,1) \text{ otherwise} \\
\lnx_i & \leftarrow \ln(x_i) \\
zv_i & \leftarrow -\infty \text{ if } p_i=0 \\
& \infty \text{ if } p_i=1 \\
& (zu + z_i \sqrt{\text{wtv}}) \text{ otherwise} \\
\text{for } i & \in (0..\text{length}(x) - 1) \\
xv_i & \leftarrow \exp\left(\text{interp}(z,\lnx,zv)\right) \\
\text{augment}(xv,p)
\end{align*}
\]

- \( \text{wtv} \) is the fraction of the variance that represents variability.
- \( zu \) is the standard normal score value that corresponds with the given quantile.
- Values of \( z \) and \( \lnx \) make up the lookup table.
- The probability values zero and one are mapped specifically to remove the appearances of infinity, precision is only good to \( \text{prob} = 10^{-13} \).
- \( zv \) are the standard normal values with mean \( zu \) and variance \( \text{wtv} \) that corresponds with the variability distribution.
- Return matrix of rates and cumulative probabilities.
By changing the file names below for each set of uncertainty and quantile values the cdf files are produced by the file print functions in Mathcad.

filnam := "gTi15050.cdf"
data := slnvar(gTi1, p, 0.50, 0.50)
WRITEPRN(filnam) := (rows(data) cols(data))
APPENDPRN(filnam) := data

![Cumulative Probability Graph](image1)

filnam := "gTi25050.cdf"
data := slnvar(gTi2, p, 0.50, 0.50)
WRITEPRN(filnam) := (rows(data) cols(data))
APPENDPRN(filnam) := data

![Cumulative Probability Graph](image2)
filnam := "gTi35050.cdf"
data := rlnvar(gTi3, p, 0.50, 0.50)
WRITEPRN(filnam) := (rows(data) cols(data))
APPENDPRN(filnam) := data

References