Downhole Memory-Logging Tools

PDF Version Also Available for Download.

Description

Logging technologies developed for hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (1) there is a general lack of vetted, high-temperature instrumentation, and (2) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature onboard computers that process and store data, and newer systems may be programmed to make ''decisions''. Since memory tools are completely self-contained, they are readily ... continued below

Physical Description

89-91

Creation Information

Lysne, Peter March 24, 1992.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Logging technologies developed for hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (1) there is a general lack of vetted, high-temperature instrumentation, and (2) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature onboard computers that process and store data, and newer systems may be programmed to make ''decisions''. Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of potassium, uranium and thorium will be available in about one year, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A second tool designed to sample fluids at conditions exceeding 400 C (752 F) is in the proposal stage. Partnerships are being formed between the geothermal industry, scientific drilling programs, and the national laboratories to define and develop inversion algorithms relating raw tool data to more pertinent information.

Physical Description

89-91

Source

  • Proceedings, Geothermal Energy and the Utility Market - The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market; San Francisco, CA, March 24-26, 1992, Geothermal Program Review X

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-920378--15
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 891892
  • Archival Resource Key: ark:/67531/metadc882651

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 24, 1992

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 9, 2016, 3:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lysne, Peter. Downhole Memory-Logging Tools, article, March 24, 1992; United States. (digital.library.unt.edu/ark:/67531/metadc882651/: accessed May 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.