Faceting of Nanocrystals during Chemical Transformation: FromSolid Silver Spheres to Hollow Gold Octahedra

PDF Version Also Available for Download.

Description

Sustained progress in nanocrystal synthesis has enabled recent use of these materials as inorganic, macromolecular precursors that can be chemically transformed into new nanostructures. The literature now contains several cases with chemical transformations being accompanied by varying degrees of modification of properties, including crystal structure and particle shape. As a recent example, we demonstrated that as-synthesized metallic nanocrystals yield, upon oxidation, nanostructures with modified morphologies such as hollow particles. This morphological change derives from directional material flows due to differing diffusivities for the reacting atomic species, in a nanoscale version of the well-known Kirkendall Effect. This general methodology has since ... continued below

Creation Information

Yin, Yadong; Erdonmez, Can & Alivisatos, A. Paul June 23, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Sustained progress in nanocrystal synthesis has enabled recent use of these materials as inorganic, macromolecular precursors that can be chemically transformed into new nanostructures. The literature now contains several cases with chemical transformations being accompanied by varying degrees of modification of properties, including crystal structure and particle shape. As a recent example, we demonstrated that as-synthesized metallic nanocrystals yield, upon oxidation, nanostructures with modified morphologies such as hollow particles. This morphological change derives from directional material flows due to differing diffusivities for the reacting atomic species, in a nanoscale version of the well-known Kirkendall Effect. This general methodology has since been extended by other groups to produce nanostructures with various compositions and shapes. We demonstrate that performing a replacement reaction on single crystalline Ag nanospheres of {approx}10 nm in diameter in an organic solvent produces hollow Au nanocrystals with an octahedral shape. Different from those Au shells made by starting with Ag particles about one order of magnitude larger, which largely reproduce that of the sacrificial Ag counterparts, the hollow nanocrystals obtained in this work show significant changes in the external morphology from the spherical Ag precursors. This evolution of a faceted external morphology during chemical transformation is made possible by the enhanced role of surface effects in our smaller nanocrystals. The competition between the Au atom deposition and Ag atom dissolution on various nanocrystal surfaces is believed to determine the final octahedral shape of the hollow Au nanocrystals. Simultaneous achievement of surface-mediated shape control and a hollow morphology in a one-pot, single-step synthetic procedure in this study promises an avenue to finer tuning of particle morphology, and thus physical properties such as surface plasmon resonance.

Source

  • Journal Name: Journal of American Chemical Society; Journal Volume: 128; Journal Issue: 39; Related Information: Journal Publication Date: 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--60696
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1021/ja0646038 | External Link
  • Office of Scientific & Technical Information Report Number: 901045
  • Archival Resource Key: ark:/67531/metadc882605

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 23, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Sept. 29, 2016, 8:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yin, Yadong; Erdonmez, Can & Alivisatos, A. Paul. Faceting of Nanocrystals during Chemical Transformation: FromSolid Silver Spheres to Hollow Gold Octahedra, article, June 23, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc882605/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.