Sonochemical Digestion of High-Fired Plutonium Dioxide Samples

PDF Version Also Available for Download.

Description

This work was performed as part of a broader effort to automate analytical methods for determining plutonium and other radioisotopes in environmental samples. The work described here represented a screening study to evaluate the effect of applying ultrasonic irradiation to dissolve high-fired plutonium oxide. The major findings of this work can be summarized as follows: (1) High-fired plutonium oxide does not undergo measurable dissolution when sonicated in nitric acid solutions, even at a high concentration range of nitric acid where the calculated thermodynamic solubility of plutonium oxide exceeds the ?g/mL level. (2) Applying organic complexants (nitrilotriacetic acid) and reductants (hydroxyurea) ... continued below

Physical Description

PDFN

Creation Information

Sinkov, Sergei I. & Lumetta, Gregg J. October 12, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This work was performed as part of a broader effort to automate analytical methods for determining plutonium and other radioisotopes in environmental samples. The work described here represented a screening study to evaluate the effect of applying ultrasonic irradiation to dissolve high-fired plutonium oxide. The major findings of this work can be summarized as follows: (1) High-fired plutonium oxide does not undergo measurable dissolution when sonicated in nitric acid solutions, even at a high concentration range of nitric acid where the calculated thermodynamic solubility of plutonium oxide exceeds the ?g/mL level. (2) Applying organic complexants (nitrilotriacetic acid) and reductants (hydroxyurea) in 1.5 M nitric acid does not significantly increase the dissolution compared with digestion in nitric acid alone. Nearly all (99.5%) of the plutonium oxide remains undissolved under these conditions. (3) The action of a strong inorganic reductant, titanium trichloride in 25 wt% HCl, results in 40% dissolution of the plutonium oxide when the titanium trichloride concentration is ?1 wt% under sonication. (4) Oxidative treatment of plutonium oxide by freshly dissolved AgO ({approx}20 mg/mL) in 1.5 M nitric acid with sonication resulted in 95% plutonium oxide dissolution. However, the same treatment of plutonium oxide mechanically mixed with 50 mg of Columbia River sediment (CRS) results in a significant decrease of dissolution yield of plutonium oxide (<20% dissolved at the same AgO loading) because of parasitic consumption of AG(II) by oxidizable components of the CRS. (5) Digesting plutonium oxide in HF resulted in dissolution yields slightly higher than 80% for HF concentration from 6 M to 14 M. Sonication did not result in any improvement in dissolution efficiency in HF. (6) Mixed nitric acid/HF solutions result in a higher dissolution yield of plutonium oxide compared with digestion in HF alone (at the same HF concentrations). Practically quantitative dissolution of PuO2 can be achieved with 6 to 8 M nitric acid + 14 M HF or 8 M nitric acid + 4 M HF mixtures. In the latter case, quantitative dissolution of plutonium oxide was demonstrated only with sonication. Overall, the results indicate that applying ultrasound in an isolated cup horn configuration to dissolve refractory plutonium oxide does not offer any substantial advantage over conventional ?heat and mix? treatment. Oxidative treatment by AgO appears to be effective only when very little or no oxidizable materials are present in the digested sample. The catalytic use of Ag(II) in the ''Catalyzed Electrolytic Plutonium Oxide Dissolution'' technology would probably be more effective than using AgO because the Ag(II) is continually regenerated electrochemically. Reductive treatment with titanium trichloride in HCl solution proves to be less efficient than the previously observed effect based on in situ generation of Ti(III) in phosphoric acid and sulfuric acid media using a dip probe sonication setup. The previous experiments, however, were performed at higher temperature and with non-steady concentration profiles of Ti(III) ion in the process of sonochemical digestion.

Physical Description

PDFN

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-16035
  • Grant Number: AC05-76RL01830
  • DOI: 10.2172/893670 | External Link
  • Office of Scientific & Technical Information Report Number: 893670
  • Archival Resource Key: ark:/67531/metadc882593

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 12, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 9, 2016, 7:18 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sinkov, Sergei I. & Lumetta, Gregg J. Sonochemical Digestion of High-Fired Plutonium Dioxide Samples, report, October 12, 2006; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc882593/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.