Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

PDF Version Also Available for Download.

Description

Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of … continued below

Creation Information

Frost, Lyman; Carrington, Bob; McKain, Rodger & Witmer, Dennis March 1, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 93 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the consequential drop in oxygen content and necessary increases in flow rates.

Source

  • AIChE Spring Meeting,Atlanta, GA,04/10/2005,04/15/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-05-00180
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911100
  • Archival Resource Key: ark:/67531/metadc882512

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • April 15, 2020, 11:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 93

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Frost, Lyman; Carrington, Bob; McKain, Rodger & Witmer, Dennis. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System, article, March 1, 2005; [Idaho Falls, Idaho]. (https://digital.library.unt.edu/ark:/67531/metadc882512/: accessed March 18, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen