Final Report on project Photoinduced Dipoles and Charge Pairs in Condensed Media

PDF Version Also Available for Download.

Description

Most of our work involves photogenerated donor (D+) and acceptor (A-) radical ion pairs and their escape and recombination. The geminate radical ions are produced by inter or intramolecular electron transfer quenching of photoexcited acceptors. We made great progress in understanding the effect of charge separation distance and other factors on free ion formation. For geminate radical ion pairs formed by intermolecular electron transfer quenching, we found that, at least in a medium polarity solvent lilce dichloromethane, free radical ions are mainly formed from solvent separated radical ion pairs (SSRIPs). Contact radical ion pairs (CRIPs) make a very small contribution ... continued below

Creation Information

Braun, Charles L. September 27, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Most of our work involves photogenerated donor (D+) and acceptor (A-) radical ion pairs and their escape and recombination. The geminate radical ions are produced by inter or intramolecular electron transfer quenching of photoexcited acceptors. We made great progress in understanding the effect of charge separation distance and other factors on free ion formation. For geminate radical ion pairs formed by intermolecular electron transfer quenching, we found that, at least in a medium polarity solvent lilce dichloromethane, free radical ions are mainly formed from solvent separated radical ion pairs (SSRIPs). Contact radical ion pairs (CRIPs) make a very small contribution to free radical ion formation. It is observed that CRIPs and SSRIPs are kinetically distinguishable species. There is a potential barrier between CRIPs and SSRIPs that prevents a fast equilibrium between the two during the recombination of radical ion pairs and free radical ion formation. We confirmed for the first time that, for the recombination of both CRIPs and SSRIPs that are in the Marcus inverted region, rate constants of SSRIPs are larger than those of CRIPs. Our study indicates that initial charge separation distance and the potential barrier between CRIPs and SSRIPs play a more important role than recombination rate on free ion formation. Temperature dependence experiments reveal that through-tunneling back electron transfer is the dominant approach for the SSRIP recombination process. We believe that our discovery of the roles played by the initial charge separation distance and the potential barrier between radical ion pairs of different separation have very important implications for the development of new concepts for the design of organic photovoltaic (OPV) cells. Photoinduced transient dipole experiments are used to probe the effective charge separation distance of flexible electron donor/acceptor systems, D-(CH2)n-A, where D is 4-N-N-dimethylaniline, A is 9-anthryl and n=3, 4. We find that the dipole moments increase strongly with solvent polarity. Under the simplifying assumption that the folded, contact configuration and the extended, solvent-separated configuration are the only two stable species after electron transfer quenching, the formation efficiencies of contact radical ion pairs (CRIPs) and solvent-separated ion pairs (SSRIPs) are estimated in different solvents. The results indicate that a significant fraction of the ion pairs exists as solvent-spearated ion pairs when the dielectric constant of the solvent is larger than 10 and that electron transfer quenching can indeed happen at large separations in polar solvents. Light-induced charge separation often occurs at the interfaces and surfaces in solar cells and other electro-optic devices. To produce a substantial photovoltaic effect, the electrically neutral excitons formed by photon absorption must diffuse to an interface and produce ion pairs by dissociation. Since low dielectric constants of 3-4 are typical for organic materials used to fabricate OPV cells, the geminate ion pairs formed after exciton dissociation are believed to have short separations and are strongly bound by Coulomb interaction. The binding energy can be estimated to be ~0.25 eV. However, the experimentally observed activation energies are typically less than 0.1 eV. The .weak temperature dependence of carrier photo generation indicates that, somehow, geminate ion pairs are formed at large separation or that some sort of energy assists separation of nearby geminate ion pairs into free ions. To understand the underlying mechanism behind the above observations; a model based on what we have learned from solution was developed for charge separation at interfaces or surfaces. It was proposed that, in order for loose radical ion pairs with long separations to escape in media with dielectric constants of 3-4, a potential barrier that can effectively stop their collapse is critically needed. Based on our model, it is concluded that closely separated radical ion pairs do not form free radical ions by themselves. However, they do play a very important role in · free ion formation. The closely separated radical ion pairs formed at the interface can effectively build a potential barrier that offers a boost for the escape of radical ion pairs formed at long distance. The counterproductive part of a high potential barrier is that a large portion of photoenergy is used to produce closely separated ion pairs. The existence of a high potential barrier is also expected to make the ·formation of distantly separated radical ion pairs less probable. In our opinion, an efficient OPV cell will be a device with a potential barrier that is enough to counterbalance the Coulomb interaction within the radical ion pairs. Meanwhile, the distantly separated (loose) ion pairs must be formed with high efficiency.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE ER13592- Final Report
  • Grant Number: FG02-86ER13592
  • DOI: 10.2172/892091 | External Link
  • Office of Scientific & Technical Information Report Number: 892091
  • Archival Resource Key: ark:/67531/metadc882451

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 27, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 7, 2016, 2:07 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Braun, Charles L. Final Report on project Photoinduced Dipoles and Charge Pairs in Condensed Media, report, September 27, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc882451/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.