Graphite Materials Testing in the ATR for Lifetime Management of Magnox Reactors

PDF Version Also Available for Download.

Description

A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic ... continued below

Creation Information

Grover, Stanley Blaine & Metcalfe, M. P. April 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on their graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment.

Source

  • HTR 2002,Petten, Netherlands,04/22/2002,04/24/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INEEL/CON-02-00370
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 911313
  • Archival Resource Key: ark:/67531/metadc882371

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 2002

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 28, 2016, 7:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Grover, Stanley Blaine & Metcalfe, M. P. Graphite Materials Testing in the ATR for Lifetime Management of Magnox Reactors, article, April 1, 2002; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc882371/: accessed May 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.