Mutagenic Potency of Food-Derived Heterocyclic Amines

PDF Version Also Available for Download.

Description

The understanding of mutagenic potency has been primarily approached using ''quantitative structure activity relationships'' (QSAR). Often this method allows the prediction of mutagenic potency of the compound based on its structure. But it does not give the underlying reason why the mutagenic activities differ. We have taken a set of heterocyclic amine structures and used molecular dynamic calculations to dock these molecules into the active site of a computational model of the cytochrome P-450 1A1 enzyme. The calculated binding strength using Boltzman distribution constants was then compared to the QSAR value (HF/6-31G* optimized structures) and the Ames/Salmonella mutagenic potency. Further ... continued below

Physical Description

PDF-file: 18 pages; size: 0.2 Mbytes

Creation Information

Felton, J S; Knize, M G; Wu, R W; Colvin, M E; Hatch, F T & Malfatti, M A October 26, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 39 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The understanding of mutagenic potency has been primarily approached using ''quantitative structure activity relationships'' (QSAR). Often this method allows the prediction of mutagenic potency of the compound based on its structure. But it does not give the underlying reason why the mutagenic activities differ. We have taken a set of heterocyclic amine structures and used molecular dynamic calculations to dock these molecules into the active site of a computational model of the cytochrome P-450 1A1 enzyme. The calculated binding strength using Boltzman distribution constants was then compared to the QSAR value (HF/6-31G* optimized structures) and the Ames/Salmonella mutagenic potency. Further understanding will only come from knowing the complete set of mutagenic determinants. These include the nitrenium ion half-life, DNA adduct half-life, efficiency of repair of the adduct, and ultimately fixation of the mutation through cellular processes. For two isomers, PhIP and 3-Me-PhIP, we showed that for the 100-fold difference in the mutagenic potency a 5-fold difference can be accounted for by differences in the P450 oxidation. The other factor of 20 is not clearly understood but is downstream from the oxidation step. The application of QSAR (chemical characteristics) to biological principles related to mutagenesis is explored in this report.

Physical Description

PDF-file: 18 pages; size: 0.2 Mbytes

Source

  • Journal Name: Mutation Research, vol. 616, N/A, March 1, 2007, pp. 90-94; Journal Volume: 616

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-225669
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 908379
  • Archival Resource Key: ark:/67531/metadc882278

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 26, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 8, 2016, 8:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 39

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Felton, J S; Knize, M G; Wu, R W; Colvin, M E; Hatch, F T & Malfatti, M A. Mutagenic Potency of Food-Derived Heterocyclic Amines, article, October 26, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc882278/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.