Effect of Chemistry Variations in Plate and Weld Filler Metal on the Corrosion Performance of Ni-Cr-Mo Alloys

PDF Version Also Available for Download.

Description

The ASTM standard B 575 provides the requirements for the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). The compositions of each element are given in a range. For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the ... continued below

Physical Description

PDF-file: 14 pages; size: 0.4 Mbytes

Creation Information

Fix, D V & Rebak, R B February 5, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The ASTM standard B 575 provides the requirements for the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). The compositions of each element are given in a range. For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. All the material used in this report were especially prepared at Allegheny Ludlum Co. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons. Results show that the corrosion rate was not affected by the chemistry of the materials in the range of the standards.

Physical Description

PDF-file: 14 pages; size: 0.4 Mbytes

Source

  • Presented at: 2006 ASME Pressure Vessels and Piping Conference, Vancouver, Canada, Jul 23 - Jul 27, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-218703
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 894778
  • Archival Resource Key: ark:/67531/metadc882258

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 5, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 23, 2016, 5:16 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fix, D V & Rebak, R B. Effect of Chemistry Variations in Plate and Weld Filler Metal on the Corrosion Performance of Ni-Cr-Mo Alloys, article, February 5, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc882258/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.