Final Report

PDF Version Also Available for Download.

Description

Under our grant, DE-FG02-03ER15480, "Early transition metal oxides as catalysts: crossing scales from clusters to single crystals to functioning materials," catalytic activity of high surface area, powdered transition metal oxides (TMO, e.g. vanadium, niobium, molybdenum, and tungsten) supported on Al2O3, SiO2, ZrO2 and TiO2 have been extensively studied. In contrast, virtually no studies have been conducted for TMOs supported on well-ordered, single-crystalline oxides. This is largely due to a number of experimental difficulties related to the preparation of well-ordered oxide surfaces and to the charging problems associated with electron based probes on insulators. In our experiments we have selected TiO2(110) ... continued below

Physical Description

1028 KB

Creation Information

White, John M. April 24, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Under our grant, DE-FG02-03ER15480, "Early transition metal oxides as catalysts: crossing scales from clusters to single crystals to functioning materials," catalytic activity of high surface area, powdered transition metal oxides (TMO, e.g. vanadium, niobium, molybdenum, and tungsten) supported on Al2O3, SiO2, ZrO2 and TiO2 have been extensively studied. In contrast, virtually no studies have been conducted for TMOs supported on well-ordered, single-crystalline oxides. This is largely due to a number of experimental difficulties related to the preparation of well-ordered oxide surfaces and to the charging problems associated with electron based probes on insulators. In our experiments we have selected TiO2(110) as a well-ordered substrate. TiO2(110) is a semiconductor (EG = 3.0 eV) and as such it has been extensively studied using ensemble averaged, as well as atomically resolved probes.1 In this work our goal was to create a well characterized, WO3/TiO2(110) model catalyst and interrogate its chemical activity for reactions of interest to this program. Initial studies of the chemical activity of the WO3 clusters on TiO2(110) focused on the partial oxidation of CH3OH. Only molecular desorption of CH3OH was observed. For 1 ML of CH3OH adsorbed on clean TiO2(110), the fraction of CH3OH desorbing from Ti4+ (250-400K) and BBO (150-250 K) sites is approximately the same, similar to H2O desorption. For CH3OH desorption from WO3/TiO2(110), a larger fraction of CH3OH desorbs from oxygen terminated sites, suggesting that the Ti4+ sites were covered by WO3. Current studies of alcohol oxidation reactions focus on the higher alcohols, such as 2-propanol and 2?butanol. In other studies, we have explored the adsorption of formaldehyde as one of the potential products in the partial oxidation of CH3OH. A catalytic polymerization reaction resulting in the formation of trioxane (paraformaldehyde) was observed.

Physical Description

1028 KB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER15480-final
  • Grant Number: FG02-03ER15480
  • DOI: 10.2172/902521 | External Link
  • Office of Scientific & Technical Information Report Number: 902521
  • Archival Resource Key: ark:/67531/metadc882254

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 24, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 3:01 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

White, John M. Final Report, report, April 24, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc882254/: accessed July 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.