Climate Change in Lowland Central America During the Late Deglacial and Early Holocene

PDF Version Also Available for Download.

Description

The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition ({approx}11,250 to 7,500 cal yr BP) inferred from sediment cores retrieved in Lake Peten Itza, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by {approx}11,250 cal yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11,250 to 10,350 cal yr BP, during the Preboreal period, lithologic changes in sediments ... continued below

Physical Description

PDF-file: 51 pages; size: 1 Mbytes

Creation Information

Hillesheim, M B; Hodell, D A; Leyden, B W; Brenner, M; Curtis, J H; Anselmetti, F S et al. February 8, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition ({approx}11,250 to 7,500 cal yr BP) inferred from sediment cores retrieved in Lake Peten Itza, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by {approx}11,250 cal yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11,250 to 10,350 cal yr BP, during the Preboreal period, lithologic changes in sediments from deep-water cores (>50 m below modern water level) indicate several wet-dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1-4) occurred at 11,200, 10,900, 10,700, and 10,400 cal yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10,350 cal yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Peten Itza with other records from the circum-Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high-latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores-Bermuda high-pressure system. This mechanism operated on millennial-to-submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC).

Physical Description

PDF-file: 51 pages; size: 1 Mbytes

Source

  • Journal Name: Journal of Quaternary Sciences, vol. 20, no. 4, June 1, 2005, pp. 363-376

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-209600
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 897995
  • Archival Resource Key: ark:/67531/metadc882215

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 8, 2005

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 22, 2016, 10:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hillesheim, M B; Hodell, D A; Leyden, B W; Brenner, M; Curtis, J H; Anselmetti, F S et al. Climate Change in Lowland Central America During the Late Deglacial and Early Holocene, article, February 8, 2005; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc882215/: accessed August 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.