ChISELS 1.0: theory and user manual :a theoretical modeler of deposition and etch processes in microsystems fabrication.

PDF Version Also Available for Download.

Description

Chemically Induced Surface Evolution with Level-Sets--ChISELS--is a parallel code for modeling 2D and 3D material depositions and etches at feature scales on patterned wafers at low pressures. Designed for efficient use on a variety of computer architectures ranging from single-processor workstations to advanced massively parallel computers running MPI, ChISELS is a platform on which to build and improve upon previous feature-scale modeling tools while taking advantage of the most recent advances in load balancing and scalable solution algorithms. Evolving interfaces are represented using the level-set method and the evolution equations time integrated using a Semi-Lagrangian approach [1]. The computational meshes ... continued below

Physical Description

57 p.

Creation Information

Plimpton, Steven James; Schmidt, Rodney Cannon; Ho, Pauline & Musson, Lawrence Cale September 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Chemically Induced Surface Evolution with Level-Sets--ChISELS--is a parallel code for modeling 2D and 3D material depositions and etches at feature scales on patterned wafers at low pressures. Designed for efficient use on a variety of computer architectures ranging from single-processor workstations to advanced massively parallel computers running MPI, ChISELS is a platform on which to build and improve upon previous feature-scale modeling tools while taking advantage of the most recent advances in load balancing and scalable solution algorithms. Evolving interfaces are represented using the level-set method and the evolution equations time integrated using a Semi-Lagrangian approach [1]. The computational meshes used are quad-trees (2D) and oct-trees (3D), constructed such that grid refinement is localized to regions near the surface interfaces. As the interface evolves, the mesh is dynamically reconstructed as needed for the grid to remain fine only around the interface. For parallel computation, a domain decomposition scheme with dynamic load balancing is used to distribute the computational work across processors. A ballistic transport model is employed to solve for the fluxes incident on each of the surface elements. Surface chemistry is computed by either coupling to the CHEMKIN software [2] or by providing user defined subroutines. This report describes the theoretical underpinnings, methods, and practical use instruction of the ChISELS 1.0 computer code.

Physical Description

57 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2006-5483
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/893127 | External Link
  • Office of Scientific & Technical Information Report Number: 893127
  • Archival Resource Key: ark:/67531/metadc882202

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Dec. 2, 2016, 9:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Plimpton, Steven James; Schmidt, Rodney Cannon; Ho, Pauline & Musson, Lawrence Cale. ChISELS 1.0: theory and user manual :a theoretical modeler of deposition and etch processes in microsystems fabrication., report, September 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc882202/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.