Ecological Interactions Between Metals and Microbes That Impact Bioremediation

PDF Version Also Available for Download.

Description

Previous work showed the correlation between bacterial biomass, population structure and the amount of lead, chromium and aromatic compounds present along a 21.6 m transect in which the concentrations of both heavy metals (Pb and Cr) and aromatic compounds varied 2-3 orders of magnitude. This work suggested that (a) biomass level was better correlated to the level of biodegradable organic C than the level of heavy metals, (b) microbial community composition differed between highly contaminated soils and uncontaminated ones, and (c) substantial microbial activity was found even in the highly contaminated soils. One confounding factor in these analyses was that ... continued below

Creation Information

Konopka, Allan E. June 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Previous work showed the correlation between bacterial biomass, population structure and the amount of lead, chromium and aromatic compounds present along a 21.6 m transect in which the concentrations of both heavy metals (Pb and Cr) and aromatic compounds varied 2-3 orders of magnitude. This work suggested that (a) biomass level was better correlated to the level of biodegradable organic C than the level of heavy metals, (b) microbial community composition differed between highly contaminated soils and uncontaminated ones, and (c) substantial microbial activity was found even in the highly contaminated soils. One confounding factor in these analyses was that the contaminated soils contained Pb, Cr, and aromatic hydrocarbons. Therefore, it was difficult to determine which factors were most important in the shifts of microbial community composition. Therefore, experiments were conducted in microcosms in which individual factors could be systematically varied. In this case, soils were used from the Seymour, IN site which had low levels of contamination, and the microbial community had little chance to adapt to heavy metals or aromatic compounds.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NABIR-1011901-2003
  • Grant Number: None
  • DOI: 10.2172/893776 | External Link
  • Office of Scientific & Technical Information Report Number: 893776
  • Archival Resource Key: ark:/67531/metadc881997

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 3:46 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Konopka, Allan E. Ecological Interactions Between Metals and Microbes That Impact Bioremediation, report, June 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc881997/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.