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Abstract

Grain size is a critically important aspect of polycrystalline materials and ex-
perimental observations on Cu and Al polycrystals have shown that a Hall-Petch-
type phenomenon does exist at the onset of plastic deformation. In this work,
a parametric study is conducted to investigate the effect of microstructural and
deformation-related length scales on the behaviour of such FCC polycrystals. It re-
lies on a recently proposed non-local dislocation-mechanics based crystallographic
theory to describe the evolution of dislocation mean spacings within each grain,
and on finite element techniques to incorporate explicitly grain interaction effects.
Polycrystals are modeled as representative volume elements (RVEs) containing up
to 64 randomly oriented grains. Predictions obtained from RVEs of Cu polycrys-
tals with different grain sizes are shown to be consistent with experimental data.
Furthermore, mesh sensitivity studies revealed that, when there is a predominance
of geometrically necessary dislocations (GNDs) relative to statistically-stored dislo-
cations (SSDs), the polycrystal response becomes increasingly mesh sensitive. This
was found to occur specially during the early stages of deformation in polycrystals
with small grains.
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1 Introduction

In polycrystalline metal aggregates, grain-size strengthening − the so-called
Hall-Petch effect − is commonly observed (Hall, 1951; Petch, 1953). Experi-
mental evidence of such size-dependent effects (e.g. Fleck et al., 1994), have
shown that the material response is controlled by deformation gradients. When
the gradients are of the order of the dominant geometric or microstructural
length scale, such as the average grain size in a polycrystal, the overall stress
scales with decreasing grain size for a given strain. In the case of metallic
polycrystals, strain gradients arise primarily due to the lattice incompatibil-
ities associated with the inhomogeneous plastic deformation between neigh-
boring grains. In order to accommodate these strain gradients, generation of
geometrically necessary dislocations (GNDs) is required in these regions of
incompatibility (Ashby, 1970). The introduction of these GNDs, in addition
to those statistically-stored dislocations (SSDs), which are inherently random
in nature, results in additional strengthening of the material. Such gradient-
dependent behaviour is expected to become important when the deformation
gradients become sufficiently large with respect to the controlling microstruc-
tural feature. Hence, polycrystals with a finer grain size develop strain gradi-
ents which extend further into the grain, exhibiting a stronger response due
to the additional presence of GNDs associated with such gradients.

Strain gradient plasticity concepts are commonly used to study length scale
effects in polycrystalline metallic aggregates and a number of non-local con-
tinuum mechanics theories have been formulated to address these effects.
Phenomenological theories incorporating higher-order strain gradients, cou-
ple stresses as well as requiring higher-order boundary conditions, were put
forward by Fleck et al. (1994), Gurtin (2003) and Gudmundson (2004), to
predict the strain gradient dependence of strength. An alternative and more
physically intuitive approach to describe strain gradient effects without the
need to include higher order stresses or additional boundary conditions was
developed by several authors (e.g. Dai and Parks, 1997; Busso et al., 2000; Bas-
sani, 2001; Arsenlis and Parks , 2001; Acharya and Beaudoin, 2000; Huang et
al., 2004). Here, strain gradient effects are introduced directly into the evo-
lutionary laws of the internal slip system state variables. This type of strain
gradient theory has been shown to be capable of providing great physical
insight into the effects of microstructure on the observed macroscopic phe-
nomena, including rate-independent plastic deformation and visco-plasticity
in both single crystal and polycrystalline materials (e.g. Busso and Cheong,
2001; Meissonnier et al., 2001). They are relatively easy to implement nu-
merically and do not require higher order stresses or additional boundary
conditions. However, they are unable to describe problems which may require
non-standard boundary conditions, such as the boundary layer problem mod-
elled by Shu et al. (2001). Furthermore, although they have been successful in
explaining length scale dependence phenomena, the link between the differ-
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ent microstructural and deformation-related length scales, and finite-element
mesh sensitivity has never been systematically addressed. For instance, in the
grain-size effect study by Acharya and Beaudoin (2000) on FCC and BCC
polycrystals, only the mesh-insensitive polycrystal response for one particular
grain size was shown. Similarly, mesh sensitivity studies on two-phase super-
alloy single crystals by Meissonnier et al. (2001) were only carried out for one
precipitate size.

In this work, a parametric study is conducted to investigate the effect of
microstructural and deformation-related length scales on the behaviour of Cu
polycrystals, including a systematic investigation of the mesh sensitivity of
the finite element (FE) results over a spectrum of length scales. The non-
local continuum rate-dependent theory presented here follows from the work
of Busso et al. (2000), where the evolution of the GNDs is linked to local slip
rate gradients and incorporated into the evolutionary behaviour of the slip
resistance, one of the internal state variables of the crystallographic model.
In addition, a novel dislocation-mechanics based crystallographic theory will
be used to describe the evolution of mean spacings between dislocations in
each grain and the average behaviour of the aggregates’ representative volume
elements.

2 Gradient and rate-dependent constitutive framework

The strain gradient and rate-dependent constitutive framework for finite
strains is presented in this section. It relies on the multiplicative decompo-
sition of the total deformation gradient referred to the undeformed crystal
configuration, F, into an inelastic component associated with pure slip, Fp,
while the lattice remains undistorted and unrotated, and an elastic compo-
nent, Fe, which accounts for the elastic stretching and rigid-body rotations,

F = FeFp . (1)

From the kinematics of dislocation motion, the rate of change of the inelastic
deformation gradient is given by,

Ḟp =

(
N∑

α=1

γ̇α Pα

)
Fp with Pα ≡ mα ⊗ nα, (2)

where the sum extends over N active slip systems, γ̇α is the slip rate in a
slip system α, while mα and nα refer to the slip direction and the slip plane
normal unit vectors, respectively. The constitutive stress-strain relation under
isothermal conditions is,

T = L : Ee , with Ee =
1

2

(
FeTFe − 1

)
, (3)
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where Ee is the Green-Lagrange tensorial elastic strain measure, L is the
anisotropic elastic moduli, 1, the second order identity tensor, and T is the
second Piola-Kirchoff stress tensor. The latter is related to the Cauchy stress
tensor σ through

σ =det(Fe)−1FeTFeT . (4)

The formulation is completed with the flow and evolutionary equations to
describe the behaviour of each individual slip system. The form of the flow rule
exhibits an explicit dependence of the activation energy on a driving stress, τα

th,
which takes into account the effects of lattice friction and thermally-activated
obstacles. Here,

τα
th = τα − Sαµ/µ0 , (5)

where τα is the resolved shear stress and Sα is the total resistance to slip in
the generic slip system α. The ratio µ/µ0 represents the shear moduli ratio at
the absolute temperatures θ and 0 K, respectively. The slip rate in each slip
system α, γ̇α, follows the exponential function (Busso, 1990),

γ̇α = γ̇0 exp

[
−F0

κθ

{
1−

〈 |τα| − Sαµ/µ0

τ̂0µ/µ0

〉p}q]
sgn(τα) . (6)

Here, F0 is the Helmholtz free energy of activation required to overcome
obstacles without the aid of external work, and κ is the Boltzmann constant.
Also, γ̇0 is a pre-exponential term and τ̂0 is the maximum glide resistance at
which dislocations can be mobilised without the aid of thermal activation.
The exponents p and q describe the profile of the activation energy versus
the resolved shear stress function, as proposed by Kocks et al. (1975). Lastly,
sgn(τα) accounts for either positive and negative slip on the system. In Eq.
6, the overall slip resistance, Sα, incorporates contributions from both statis-
tically stored and geometrically necessary forest dislocations. Therefore, the
total dislocation density on an arbitrary slip system is defined by,

ρα
T = ρα

S + ρα
G , (7)

where ρα
S and ρα

G refer to the SSD and GND densities, respectively. In addition,
ρα

S and ρα
G are discretised into pure edge and pure screw components. Thus

Eq. 7 can be expanded to,

ρα
T =(ρα

Se
+ ρα

Ssw
) + (ρα

Gsw
+ ρα

Get
+ ρα

Gen
) , (8)

where ρα
Se

and ρα
Ssw

further denote the pure edge and screw SSD components,
ρα

Gsw
a set of screw GNDs parallel to the slip direction, mα, and ρα

Get
and ρα

Gen
,

edge GND components oriented parallel to the slip system normal, nα, and
to tα = mα × nα, respectively. The evolutionary behaviour of both edge and
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screw SSDs follows from the work of Cheong and Busso (2004),

ρ̇α
Se
=

Ce

bα
S


Ke

√√√√√ N∑
β=1

ρβ
T − 2deρ

α
Se


 |γ̇α| , (9)

ρ̇α
Ssw

=
Csw

bα
S


Ksw

√√√√√ N∑
β=1

ρβ
T − ρα

Ssw


Kswπdsw

2

√√√√√ N∑
β=1

ρβ
T + 2dsw




 |γ̇α| , (10)

where Ce and Csw describe the relative contributions to the slip produced
by SSDs from edge and screw types, and bα

S is the magnitude of the SSDs’
Burgers vector. The parameters de and dsw are the respective critical distances
for spontaneous annihilation of opposite sign edge and screw dislocations,
while Ke and Ksw are related to the mean free path of the edge and screw
dislocations, respectively. Similarly, the evolutionary law for each set of GNDs
is determined from Nye’s dislocation tensor in terms of the spatial gradient of
the slip rate (Busso et al., 2000),

bα
G

(
ρ̇α

Gsw
mα + ρ̇α

Get
tα + ρ̇α

Gen
nα
)
= curl (γ̇α nα Fp) . (11)

The slip resistance contributions from the SSDs and GNDs can then be
determined from,

Sα
S =λS µ0 b

α
S

√√√√√ N∑
β=1

hαβ
S ρβ

S , (12)

Sα
G =λG µ0 b

α
G

√√√√ nα∑
β=1

hαβ
G ρβ

G , (13)

where µ is the shear modulus, λS and λG are statistical coefficients which ac-
count for the deviation from regular spatial arrangements of the SSD and
GND populations, respectively, and bα

S and bα
G the corresponding Burgers

vector magnitudes. In what follows, it will be assumed for simplicity that
λ = λS = λG and b = bα

S = bα
G. Furthermore, hαβ

S and hαβ
G are SSD and GND

interaction functions, respectively, which can be generically expressed as,

hαβ
k =ωk1 + (1− ωk2) δ

αβ for k = S,G, (14)

where ωk1 and ωk2 are the interaction coefficients, and δαβ is the Kronecker
delta. The corresponding total slip resistance, Sα, can be obtained from,

Sα =
[
(Sα

S )
2 + (Sα

G)
2
]1/2

(15)

=λ µ b

√√√√√ N∑
β=1

[
hαβ

S ρβ
S + hαβ

G ρβ
G

]
(16)
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The above crystallographic formulation has been implemented numerically
into a commercial FE code (ABAQUS, 2001) using a finite strain framework
and an implicit time-integration procedure to update the stresses and slip
resistances at each integration point. It should be noted that the non-local
effects associated with the deformation gradients at each integration point are
incorporated into Eq. 16 through the current value of the GND densities. At
each integration point, the evolution of the GNDs is determined from Eq. 11
with the calculated slip-rate gradients outlined by Busso et al. (2000). There,
the slip rate at the integration points are extrapolated to the corner nodes
of the element using linear shape functions associated with an 8-noded lin-
ear isoparametric element with full (2x2x2) integration so that the number of
corner nodes and integration points coincide. Subsequently, the slip rate gra-
dients at the corner nodes are interpolated back to the integration points from
the spatial derivatives of the linear shape functions. A schematic description
of the required sequence of steps is shown in Fig. 1. Here, the term curl{Φ̇}
refers to the right-hand side of Eq. 11. In passing, we note that Acharya and
Bassani (2000) adopts a different approach whereby the spatial derivatives
of Fe−1 are linked explicitly to the lattice incompatibility while Cermelli and
Gurtin (2001) propose curl(Fp)FpT.

3 Calibration of the single crystal model for copper

The single crystal constitutive model was calibrated using high symmetry
copper single crystal tensile test data. The flow rule parameters (i.e. F0, τ̂0, p,
q and γ̇0 in Eq. 6) were determined first. Following the work of Kocks et al.
(1975), the pre-exponential term γ̇0 typically varies within the range of 106 to
107s−1, the Helmholtz free energy of activation F0 is typically

0.05 ≤ F0

µ b3
≤ 2.0 , (17)

while the exponents p and q vary within the ranges,

0≤ p ≤ 1 , (18)

1≤ q ≤ 2 . (19)

For the hardening laws (Eqs. 9 and 10), the relevant parameters are the
annihilation distances for the edge and screw dislocations, de, dsw, and the
constants defining the mean free paths of the respective dislocation types,
namely Ke and Ksw. These parameters are chosen to be compatible with
physical observations made at the microstructural level. The selected values
for de and dsw are 1.0 nm and 5.0 nm, respectively. This value of de is consistent
with the estimate of 1.6 nm reported by Essmann and Mughrabi (1979). A
higher value of 5 nm is taken for dsw based on the fact that screw dislocations
have the ability to cross-slip, thus increasing the likelihood of spontaneous
annihilation between screw dislocations of opposite sign.
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Previous slip line work on Cu by Rebstock (1957) and Mader (1957) esti-
mated the distance travelled by edge dislocations to be approximately twice
that of screw types. As this is associated with the mean free path of the
dislocations, Ksw is set to be twice the value of Ke so that, in Eq. 10, the
relationship between the mean free paths of the two dislocation types agree
with these physical observations. Consequently, Ksw = 2Ke and a value of
Ke = 14.1×10−3 was calibrated based on the single crystal stress-strain data,
while Ce and Csw were set at 0.5 to keep the slip contributions from both edge
and screw dislocations equal. The initial total dislocation density specified is
16000 mm−2, which is typically of the same order as that measured in pure
FCC metallic single crystals (Honeycombe, 1968). The total density is equally
made up of edge and screw types and assumed to be same in each of the
twelve octahedral slip systems. As shown in Fig. 2, good agreement was ob-
tained between the predicted single crystal response and the tensile test data
from [100], [111] and [112] oriented Cu single crystals (Takeuchi, 1975). The
calibration was carried out at a temperature of 298K and at a true strain rate
of 3× 10−3s−1. The slightly higher predictions obtained for the three orienta-
tions are likely to be due to the assumption that the Cu crystals were initially
perfectly oriented with the [100], [111] and [112] crystal axes. A summary of
the material constants and model parameters at 298K, is shown in Table 1.
Note that of all these parameters, only three were calibrated to optimise the
stress-strain predictions shown in Fig. 2.

4 Representative volume elements of Cu polycrystals

In this study, two representative volume elements (RVEs) are used to rep-
resent copper polycrystals. The first consists of a polycrystal with 8 randomly
oriented grains, and the other contains 64 random grains. Both RVE models
have the same initial cubic geometry and each grain has the same cuboidal
shape and size, containing the same number of elements. The models are con-
structed using standard 20-noded isoparametric 3D elements with reduced
integration. The randomly assigned grain orientations for both models are
shown in the stereographic triangles of Fig. 3.

The series of cubic meshes generated for the 8-grain polycrystal is shown in
Fig. 4. Here, the initial grain size is denoted by D. The coarsest mesh consisted
of 2x2x2 elements and subsequent mesh refinement was carried out in multiples
of 8 with the finest mesh having 14x14x14 elements. Note that all the meshes
share identical assignments of the initial grain orientations and only differ in
the number of elements used to discretise the grains. A similar description
applies to the 64-grain polycrystal with the coarsest form of the model made
up of a 4x4x4 mesh. Two sequences of mesh refinement in multiples of 64
were used to produce finer 8x8x8 and 16x16x16 meshes, which are identical
in geometry to those of the 8-grain polycrystal and are therefore not shown
here.
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To study the influence of grain size on mesh sensitivity, a range of grain
sizes D = 7.5, 15, 30, 75 and 150µm were considered for the 8-grain polycrystal
RVE, while D = 15 and 75µm were used for the 64-grain polycrystal. Periodic
boundary conditions were applied to the external faces of the cuboidal mesh to
accomodate a general deformation state in the polycrystal. In all cases, each
grain of the polycrystal is described by the Cu single crystal model calibrated
in the previous section. A displacement history is applied to the X3 face of
the RVE models (see Fig. 4) so as to give a true strain rate of 1.0× 10−3s−1.
All simulations were carried out at a temperature of 298 K.

5 Predicted polycrystal response

The predicted polycrystal response and the results of the mesh sensitivity
study are presented in this section. Figure 5 shows the grain size effect on the
polycrystal response for the 8-grain polycrystal calculated with the finest FE
mesh (i.e. 14x14x14 elements). It is observed that a reduction in the initial
grain size from 150 to 7.5 µm strengthens the polycrystal. This effect is small
at relatively large grain sizes (D = 75, 150µm) and increases with decreas-
ing grain size. Figures 6(a) to (e) show the effect of mesh refinement on the
polycrystal response for different initial grain sizes. For the two largest grains,
namely D = 75 and 150µm (see Figs. 6(a) and (b)), the predicted responses
are relatively mesh insensitive. However, when D ≤ 30µm, the polycrystal
response increases with mesh refinement. It can also be seen from the cir-
cled regions in Figs. 6(c) to (e), that the polycrystal response becomes mesh
sensitive only after a small amount of strain. In the case of D = 7.5µm, the
predictions exhibit mesh sensitivity as soon as plastic deformation occurs.

A summary of these results can be seen in Fig. 7, where the predicted flow
stress σ33 for different values of D at ε33 = 0.10 have been plotted against a
measure of the extent of mesh refinement, henceforth defined by the ratio η
between D and the element size. It can be seen that polycrystals with D =
7.5 and 15µm are highly dependent on the ratio η, showing an appreciable
increase in the flow stress with decreasing element size. On the other hand,
the polycrystal response for D = 75 and 150µm are practically insensitive to
mesh size. Figures 8(a) and (b) show that the mesh sensitivity results on the
64-grain polycrystal are similar to those on the 8-grain polycrystal when D =
75µm and 15 µm, respectively. In Fig. 8(a), the stress-strain responses with D
= 75µm, stabilise and approach a mesh-insensitive solution, whereas in Fig.
8(b), when D = 15µm, it increases with mesh refinement in the direction of
the arrows. It should also be noted that the stronger predicted response of the
64-grain polycrystal is linked to the larger number of randomly-oriented grains
used to represent the RVE. If the number of grains were increased further, a
response independent of the number of grains would be expected.
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6 Discussion

6.1 Effect of initial dislocation density

This discussion will focus on understanding the cause(s) for the lack of
mesh convergence, observed in some of the above cases. As previously dis-
cussed, the Cu polycrystal response is mesh insensitive when strain gradient
effects are small (i.e. D = 75, 150µm) but becomes mesh sensitive when D
≤ 30µm, in particular at smaller strains. This suggests that the initial build-
up of GNDs at the onset of deformation far exceeds the SSD population and
consequently, controls the polycrystal flow stress. Since the initial dislocation
density in a grain is assumed to consist entirely of SSDs, the effect of the ini-
tial dislocation density, ρα

i , on the polycrystal response is assessed by defining
it in terms of the reference value ρα

ref = 16, 000 mm−2 from the single crystal
model calibration.

Figure 9 shows the polycrystal responses using the coarsest 4x4x4 and finest
14x14x14 meshes when ρα

i =ρα
ref and ρα

i = 625 ρα
ref for D = 7.5, 15 and 30µm.

It can be seen that the change in the polycrystal response between the two
meshes decreases considerably with increasing grain size and ρα

i /ρ
α
ref ratio. For

D=15 µm, the change in the polycrystal response with mesh refinement is less
than 3%, and for D=30µm, the response becomes mesh insensitive. To further
investigate the effect of changing the initial dislocation density in each grain,
an appropriate mesh sensitivity measure needs to be defined. For a given grain
size and strain level, let that measure be defined in terms of variables for the
mesh of interest relative to a mesh-insensitive reference case. Then, a suitable
measured may be defined as

Ψ=
σCUR − σREF

ηCUR − ηREF

, (20)

where σCUR, ηCUR and σREF , ηREF are the current and reference polycrystal
uniaxial stresses and mesh refinement extents (ie. η = D

el.size
), respectively.

When Ψ is zero, the polycrystal response is considered to be mesh insensitive.
The effect of ρα

i /ρ
α
ref on Ψ at ε33 = 0.10 and D ≤ 30µm is shown in Fig. 10.

Here, the reference mesh-insensitive case was that corresponding to D = 30
µm and ρα

i /ρ
α
ref = 625. It can be seen that smaller values of Ψ are associated

with the larger grain sizes. The decrease of Ψ with increasing ρα
i /ρ

α
ref ratios is

initially sharp and the response becomes approximately mesh insensitive when
the ρα

i /ρ
α
ref value is raised to 625. From these results, it is clear that a mesh

insensitive polycrystal response can be achieved for a given grain size only
for grains with sufficiently high initial dislocation densities (i.e. high values
of ρα

i /ρ
α
ref ). Of course, this can only be a solution if justified by available

experimental data, as will be discussed next.
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6.2 Hall-Petch effect on initial yield

It has been experimentally observed that, for sufficiently fine grains, the
initial yield stress of undeformed pure FCC polycrystals, such as Cu (Carreker
and Hibbard, 1953) and Al (Hansen, 1977), are grain-size dependent. This
observed Hall-Petch effect at initial yielding cannot be described using the
current non-local crystallographic model since no GNDs are accumulated prior
to yielding. As discussed by Kubin and Mortensen (2003), this size effect at
yield is commonly associated with large number of dislocations at or close
to the grain boundary whereas in the work-hardening regime, the effect is
governed by the evolution of GNDs.

In this study, to capture the Hall-Petch effect at yield, a unique initial SSD
density has been defined for different grain sizes. In order to determine the
initial density for each grain size, simulations were carried out on the 8-grain
Cu aggregate for the range of grain sizes taken from the experimental work of
Hansen (1979), namely D = 14, 33 and 220µm. In all cases, the 10x10x10 FE
mesh was used. Suitable values of ρα

i were determined by scaling the ρα
i /ρ

α
ref

ratio linearly with D−1/2 (see Fig. 11). From the simulations, the proof and
flow stresses at ε33 = 0.002 and 0.05 are plotted againstD−1/2 in Fig. 11(b) and
linearly fitted to obtain the corresponding slopes of 4.34 and 5.12, respectively.
The only suitable data from Hansen (1979) that can be used for comparison
is at ε33 = 0.05, where the slope of stress to D−1/2 was found to be 5.0. Hence,
the appropriate ρα

i /ρ
α
ref values for D = 14, 33 and 220µm are chosen to be

127, 77 and 29, respectively. The polycrystal responses predicted for these
grain sizes are compared against the data in Fig. 12, where a good agreement
can be seen even though only 8 grains have been used to represent an entire
polycrystalline aggregate.

For each grain size, additional simulations were also carried out with the
strain gradient effects removed (see dashed lines in Fig. 12) so that the harden-
ing behaviour will only be controlled by the evolution of the SSDs. Apart from
the largest polycrystal grain size (D = 220µm), where the strain gradient ef-
fects are expected to be small in any case, these results revealed that there is a
considerable difference between the predicted responses, with and without the
evolution of the GNDs. These results also showed that work-hardening con-
tribution from the GNDs is not reduced when the initial SSD population was
raised in accordance with the Hall-Petch effect at yield. It is clear to see that
the build up of strain gradients, leading to the accumulation of GNDs during
deformation, significantly affects the hardening behaviour of the polycrystal.

7 Conclusions

A non-local crystallographic model has been relied upon to study the effect
of microstructural and deformation-related length scales on the macroscopic
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response of Cu polycrystalline aggregates. It was found that two distinct phe-
nomena had to be accounted for in order to predict consistently experimentally
observed grain size effects in Cu polycrystals: (i) a Hall-Petch type effect at
initial yielding, by assigning higher initial dislocation densities to the smaller
grains, and (ii) the generation of geometrically necessary dislocations arising
from the slip gradients which develop during deformation.

When the initial yielding of the Cu polycrystal aggregate was assumed to
be independent of grain size, the results were found to be mesh sensitive for
grains smaller than 30 µm when the initial dislocation densities defined in
each grain were relatively low. In such cases, the GNDs generated as a result
of the first slip gradients far exceeded the density of SSDs, thus enabling the
GNDs to dictate the hardening behaviour of the polycrystal from the onset of
deformation. This problem cannot be overcome by further mesh refinement,
since even more severe slip gradients, and hence higher GND densities, will
develop. Therefore, a mesh insensitive polycrystal response will be obtained
for a given grain size only when the width of the slip gradient regions is a small
fraction of the grain size, otherwise the grains should contain a sufficiently high
amount of dislocations per unit volume before the onset of slip. This study
has highlighted some of the strengths and limitations, till now unexplored, of
strain gradient formulations which do not rely on higher order fields. A suitable
procedure to establish when mesh sensitive results arise has been presented.
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Table 1
Single crystal model parameters

Elastic Constants (GPa) Flow Rule (Eq.6) Hardening Laws (Eqs. 9,10)

Material parameters obtained from other than stress-strain data

C11 = 166.1 Ksw = 2Ke

C12 = 111.9 b = 2.57 x 10−7 mm

C44 = 75.6 ρα
Se

= ρα
Ssw

= 8000 mm−2

µ0 = 49.0 de = 1.0nm ; dsw = 5.0nm

µ = 45.0 ωS1 = 1.5 ; ωS2 = 1.2

ωG1 = 0.0 ; ωG2 = 0.0

Ce = Csw = 0.5

λ = 0.3

Material parameters chosen to fit the stress-strain data

F0 = 2.5× 10−19 J Ke = 14.1× 10−3

τ̂0 = 20.0 MPa

γ̇0= 106s−1

p = 0.20; q = 1.20
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