On the formulation of a crystal plasticity model.

PDF Version Also Available for Download.

Description

This report presents the formulation of a crystal elasto-viscoplastic model and the corresponding integration scheme. The model is suitable to represent the isothermal, anisotropic, large deformation of polycrystalline metals. The formulation is an extension of a rigid viscoplastic model to account for elasticity effects, and incorporates a number of changes with respect to a previous formulation [Marin & Dawson, 1998]. This extension is formally derived using the well-known multiplicative decomposition of the deformation gradient into an elastic and plastic components, where the elastic part is additionally decomposed into the elastic stretch V{sup e} and the proper orthogonal R{sup e} tensors. ... continued below

Physical Description

62 p.

Creation Information

Marin, Esteban B. August 1, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report presents the formulation of a crystal elasto-viscoplastic model and the corresponding integration scheme. The model is suitable to represent the isothermal, anisotropic, large deformation of polycrystalline metals. The formulation is an extension of a rigid viscoplastic model to account for elasticity effects, and incorporates a number of changes with respect to a previous formulation [Marin & Dawson, 1998]. This extension is formally derived using the well-known multiplicative decomposition of the deformation gradient into an elastic and plastic components, where the elastic part is additionally decomposed into the elastic stretch V{sup e} and the proper orthogonal R{sup e} tensors. The constitutive equations are written in the intermediate, stress-free configuration obtained by unloading the deformed crystal through the elastic stretch V{sup e-}. The model is framed in a thermodynamic setting, and developed initially for large elastic strains. The crystal equations are then specialized to the case of small elastic strains, an assumption typically valid for metals. The developed integration scheme is implicit and proceeds by separating the spherical and deviatoric crystal responses. An ''approximate'' algorithmic material moduli is also derived for applications in implicit numerical codes. The model equations and their integration procedure have been implemented in both a material point simulator and a commercial finite element code. Both implementations are validated by solving a number of examples involving aggregates of either face centered cubic (FCC) or hexagonal close-packed (HCP) crystals subjected to different loading paths.

Physical Description

62 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2006-4170
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/890604 | External Link
  • Office of Scientific & Technical Information Report Number: 890604
  • Archival Resource Key: ark:/67531/metadc881893

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 30, 2016, 2:42 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Marin, Esteban B. On the formulation of a crystal plasticity model., report, August 1, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc881893/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.