MASS BALANCE: A KEY TO ADVANCING MONITORED AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

PDF Version Also Available for Download.

Description

Monitored natural attenuation (MNA) and enhanced attenuation (EA) are two environmental management strategies that rely on a variety of attenuation processes to degrade or immobilize contaminants and are implemented at appropriate sites by demonstrating that contaminant plumes have low risk and are stable or shrinking. The concept of a mass balance between the loading and attenuation of contaminants in a groundwater system is a powerful framework for conceptualizing and documenting the relative stability of a contaminant plume. As a result, this concept has significant potential to support appropriate implementation of monitored natural attenuation (MNA) and enhanced attenuation (EA). For mass ... continued below

Creation Information

Looney, B; Karen Vangelas, K; Karen-M Adams, K; Chappelle, Francis H.; Early, Tom O. & Sink, Claire H. June 30, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 25 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Monitored natural attenuation (MNA) and enhanced attenuation (EA) are two environmental management strategies that rely on a variety of attenuation processes to degrade or immobilize contaminants and are implemented at appropriate sites by demonstrating that contaminant plumes have low risk and are stable or shrinking. The concept of a mass balance between the loading and attenuation of contaminants in a groundwater system is a powerful framework for conceptualizing and documenting the relative stability of a contaminant plume. As a result, this concept has significant potential to support appropriate implementation of monitored natural attenuation (MNA) and enhanced attenuation (EA). For mass balance to be useful in engineering practice, however, it is necessary to quantify it in practical ways that facilitate overall site remediation and which are consistent with existing regulatory guidance. Two divergent philosophies exist for quantifying plume stability--empirical and deterministic. The first relies on historical contaminant concentration data and bulk geochemical information from a monitoring well network and documents plume stability using trend analysis and statistical tools. This empirical approach, when feasible, provides powerful and compelling documentation of plume behavior and mass balance. It provides an interpretation on a relevant scale under field conditions. It integrates the operative attenuation processes measured by observing their actual impact on the plume. The power of the empirical approach was recognized early in the development of MNA guidance and protocols and it is currently the basis of the three lines of evidence used in MNA studies. The empirical approach has some weaknesses, however. It requires a relatively long period of undisturbed historical data. Thus it cannot be effectively applied to sites where active remediation was initiated quickly and is currently operating. It cannot be used as a tool to determine how much source removal is needed or when to turn off active remediation and transition to MNA. It cannot be used to evaluate potential enhancement options (unless a long period of post enhancement monitoring is planned). It provides only indirect information about process and treats the plume as a ''black box''. The empirical approach has the advantage that, when sufficient monitoring data are available, the attenuation capacity can be defined inexpensively and with a high degree of certainty. Alternatively, a deterministic approach can be used to assess mass balance and plume stability. In this approach, the physical, chemical, and biological attenuation processes are used to assess contaminant loading and attenuation. The deterministic approach has the advantage that, when sufficient hydrologic, geochemical, and microbiological data are available, it is possible to project how a system will respond to contaminant removal actions or enhancements of natural attenuation processes. The ''black box'' of the plume is taken apart, quantified, and put back together again. The disadvantage of the deterministic approach is that it is difficult to measure all or most of the relevant hydrologic, geochemical, and biological parameters with any certainty. Case studies over the past decade demonstrate that empirical and deterministic approaches to MNA/EA are not mutually exclusive. These studies document that improved decision support and efficiency result by combining these methods based on the individual challenges presented by a given site. Whenever possible, the empirical approach is used to quantify mass loading and attenuation capacity (mass of contaminant/unit time) at particular sites. This is the most effective way to demonstrate the efficiency of ongoing natural attenuation processes in accordance with current regulatory guidance. But in addition, the monitoring well networks needed to apply the empirical approach can also yield estimates of the hydrologic, geochemical, and biological parameters needed to apply deterministic models. These models can then be used to estimate how contaminant behavior will change over time, as contaminant mass is removed, or if attenuation mechanisms are enhanced by engineering methods. The dual use of these empirical and deterministic approaches can help integrate the use of MNA and EA for overall site remediation.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-STI-2006-00082
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/891672 | External Link
  • Office of Scientific & Technical Information Report Number: 891672
  • Archival Resource Key: ark:/67531/metadc881886

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 30, 2006

Added to The UNT Digital Library

  • Sept. 21, 2016, 2:29 a.m.

Description Last Updated

  • Nov. 2, 2016, 12:57 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 25

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Looney, B; Karen Vangelas, K; Karen-M Adams, K; Chappelle, Francis H.; Early, Tom O. & Sink, Claire H. MASS BALANCE: A KEY TO ADVANCING MONITORED AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS, report, June 30, 2006; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc881886/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.