Molecular-scale studies of single-channel membrane pores : final report.

PDF Version Also Available for Download.

Description

We present our research results on membrane pores. The study was divided into two primary sections. The first involved the formation of protein pores in free-standing lipid bilayer membranes. The second involved the fabrication via surface micromachining techniques and subsequent testing of solid-state nanopores using the same characterization apparatus and procedures as that used for the protein pores. We were successful in our ability to form leak-free lipid bilayers, to detect the formation of single protein pores, and to monitor the translocation dynamics of individual homogeneous 100 base strands of DNA. Differences in translocation dynamics were observed when the base ... continued below

Physical Description

47 p.

Creation Information

Fleming, James Grant; Evans, Kervin O.; Burns, Alan Richard & Swartzentruber, Brian Shoemaker October 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We present our research results on membrane pores. The study was divided into two primary sections. The first involved the formation of protein pores in free-standing lipid bilayer membranes. The second involved the fabrication via surface micromachining techniques and subsequent testing of solid-state nanopores using the same characterization apparatus and procedures as that used for the protein pores. We were successful in our ability to form leak-free lipid bilayers, to detect the formation of single protein pores, and to monitor the translocation dynamics of individual homogeneous 100 base strands of DNA. Differences in translocation dynamics were observed when the base was switched from adenine to cytosine. The solid state pores (2-5 nm estimated) were fabricated in thin silicon nitride membranes. Testing of the solid sate pores indicated comparable currents for the same size protein pore with excellent noise and sensitivity. However, there were no conditions under which DNA translocation was observed. After considerable effort, we reached the unproven conclusion that multiple (<1 nm) pores were formed in the nitride membrane, thus explaining both the current sensitivity and the lack of DNA translocation blockages.

Physical Description

47 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2003-3606
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/918367 | External Link
  • Office of Scientific & Technical Information Report Number: 918367
  • Archival Resource Key: ark:/67531/metadc881777

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2003

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 29, 2016, 8:27 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fleming, James Grant; Evans, Kervin O.; Burns, Alan Richard & Swartzentruber, Brian Shoemaker. Molecular-scale studies of single-channel membrane pores : final report., report, October 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc881777/: accessed May 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.