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Executive Summary 
 Many carbonate reservoirs are naturally fractured and typically produce less than 10% 
original oil in place during primary recovery.  Spontaneous imbibition has proven an important 
mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood 
candidates.  In some situations, chemical stimulation can promote imbibition of water to alter the 
reservoir wettability toward water-wetness such that oil is produced at an economic rate from the 
rock matrix into fractures.  In this project, cores and fluids from five reservoirs were used in 
laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the 
Permian Basin of Texas and New Mexico; and the Interlake, Stony Mountain, and Red River 
formations from the Cedar Creek Anticline in Montana and South Dakota.  Solutions of 
nonionic, anionic, and amphoteric surfactants with formation water were used to promote water-
wetness.  Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery 
up to 38%.  Most Eagle Creek cores did not respond to any of the tested surfactants.  Some 
Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L).   
The results indicate that cores with higher permeability responded better to the surfactants.  The 
increased recovery is mainly ascribed to increased water-wetness.  It is suspected that rock 
mineralogy is also an important factor.   
 The laboratory work generated three field tests of the surfactant soak process in the West 
Fuhrman Masho San Andres Unit.  The flawlessly designed tests included mechanical well clean 
out, installation of new pumps, and daily well tests before and after the treatments.  Treatments 
were designed using artificial intelligence (AI) correlations developed from 23 previous 
surfactant soak treatments.  The treatments were conducted during the last quarter of 2006.  One 
of the wells produced a marginal volume of incremental oil through October.  It is interesting to 
note that the field tests were conducted in an area of the field that has not met production 
expectations.  The dataset on the 23 Phosphoria well surfactant soaks was updated.  An analysis 
of the oil decline curves indicted that 4.5 lb of chemical produced a barrel of incremental oil.  
The AI analysis supports the adage “good wells are the best candidates.” The generally better 
performance of surfactant in the high permeability core laboratory tests supports this 
observation. 
 AI correlations were developed to predict the response to water-frac stimulations in a 
tight San Andres reservoir.  The correlations maybe useful in the design of Cedar Creek 
Anticline surfactant soak treatments planned for next year. 
 Nuclear Magnetic Resonance scans of dolomite cores to measure porosity and saturation 
during the high temperature laboratory work were acquired.  The scans could not be correlated 
with physical measurement using either conventional or AI methods. 
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Results of Work   
Many carbonate reservoirs are naturally fractured and typically produce less than 10% 

original oil in place (OOIP) during primary recovery.  Those reservoirs respond poorly to water 
injection, but spontaneous imbibition with water has proven to be effective.  In some situations, 
chemical stimulation can promote imbibition of water to alter the reservoir wettability toward 
water-wetness such that oil can be produced at an economic rate.  In this project, water-wetness 
was promoted with nonionic, anionic, and amphoteric surfactants.  After preparing core samples 
using the corresponding reservoir crude oil and brine, spontaneous production of oil was 
measured in glass imbibition cells at reservoir temperature.  After imbibition had ceased, the 
cores were transferred into surfactant solutions above the critical micelle concentration (CMC) to 
test for enhanced recovery by further imbibition. 

The San Andres formation in the Permian Basin of Texas and New Mexico is one of the 
great oil-producing formations in the United States.  An estimated 50,000 wells produce oil from 
this oil-wet carbonate reservoir.  Thus, the San Andres was the largest target reservoir for the 
technology being developed through this project.  Cores and reservoir fluids from Fuhrman 
Masho and Eagle Creek fields of the San Andres formation were used in the laboratory for low 
temperature (104°F) imbibition tests.  Initially, the Interlake, Stony Mountain, and Red River 
dolomite reservoirs on the Cedar Creek Anticline were candidates for the surfactant soak 
process.  These reservoirs are second to the San Andres in terms of surfactant soak potential.  
Cores and fluids from these high temperature reservoirs (200oF) were used to conduct imbibition 
experiments in a laboratory equipped for high temperature work.    

Reservoir brine used as the imbibition fluid in Fuhrman Masho cores generated oil 
recovery in the range of 0–4% of the OOIP.  Immersion in T91-8 surfactant solution resulted in 
additional recovery up to 38% OOIP.  The increased recovery is mainly ascribed to increased 
water-wetness.  When synthetic reservoir brine was used as the imbibition fluid in Eagle Creek 
cores, oil recovery was up to 35% of the OOIP.  Immersion in surfactant solutions did not 
improve oil recovery significantly; only one core had a 6% increase in oil, but most cores did not 
respond to any surfactant tested.  Therefore, the Eagle Creek field is not a candidate for the 
spontaneous imbibition process with the proposed surfactants. 

The high temperature imbibition tests with Cedar Creek Anticline cores demonstrated 
that surfactant generates additional oil in the Interlake and Stony Mountain reservoir systems.  
Surprisingly the Red River system appeared to be water-wet with very high imbibition oil 
recovery from cleaned cores.  Surfactant did not improve oil recovery from these cores; however, 
improvement was seen in the non-cleaned cores.    

Arbuckel formation core material and fluids from Kansas arrived late in the project life.  
Future plans are to conduct imbibition tests with this system. 

The results of the laboratory work indicate that an initial wettability in the range of 
weakly water-wet to oil-wet can be altered to more water-wet by the use of surfactants to 
promote spontaneous imbibition.  The success of the surfactant treatment may also depend on the 
pore structure and mineralogy.     

The possible mechanisms of the improved imbibition of surfactant solutions in this 
project are as follows: cationic ions interact with the adsorbed anionic materials from the crude 
oil, resulting in the release of the adsorbed organic materials from the rock surface.  The rock 
surface becomes more water-wet, and the imbibition rate is increased1 due to an increase in 
capillary pressure resulting from alteration of the contact angle.  
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In the presence of surfactant, the interfacial tensions (IFTs) between the crude oil and the 
surfactant solutions are much lower than that of the crude oil and the synthetic brine.  For a 
nonionic surfactant, the mechanism may be the decrease of the IFT between oil and brine.  The 
corresponding increase in the Bond number, σρ /2grNa = , probably contributed to improved oil 
recovery through gravity segregation.2  If the IFT is sufficiently low, capillary pressure cP  is also 
very small. Gravity segregation will then significantly contribute to oil recovery in cores.  

Anionic surfactants can decrease the IFT and improve gravity segregation.  For carbonate 
rock surfaces, anionic surfactants can alter the wettability to more water-wet.3  The anionic 
surfactant may increase capillary pressure via adsorption.  
 Since displacement is not a factor, the single well surfactant soak process is dependent on 
the surface area of the formation exposed to the wettability altering surfactant.  Thus, fractured 
wells are candidates.  Adding the surfactant with hydraulic fracturing fluids is also feasible.  A 
field-testing plan based on adding the nonionic surfactant to water-frac stimulations was 
developed.  The plan called for test wells that had not been previously stimulated; hence, a direct 
before-and-after comparison of improved oil recovery due to imbibition is not possible.  
However an AI-based method was developed to establish a benchmark against which future 
water-frac wells plus surfactant can be evaluated.  The before-and-after responses of 
approximately 80 water-fraced wells were examined.  Suitable neural network correlations were 
found to predict water-frac results given the current oil producing rate, and the gamma ray and 
the neutron log response patterns through the fractured zone.  The AI method can be applied to 
either open-or cased-hole logs.  The operator of a tight San Andres dolomite reservoir elected not 
to conduct the tests due to excessive service company costs. 
 Well logs and production history of producing wells in the Eagle Creek San Andres field 
on the northwest flank of the Permian Basin were acquired to predict surfactant soak responses.  
The predictions were based on AI correlations developed from field tests conducted in a 
Phosphoria dolomite reservoir in the Big Horn basin of Wyoming.  While the correlation 
suggested that the process should be tested, the laboratory work failed to support a field test.  
 The operator of the Cedar Creek Anticline reservoirs is considering surfactant soak tests 
in the Interlake and Stony Mountain reservoirs.  The AI correlations will be utilized in the 
stimulation designs.  Field tests are expected during the first quarter of 2007. 

The Phosphoria 23-well surfactant soak dataset was revisited and updated.  The increase 
in the producing time since the well treatments were conducted facilitated more accurate 
analyses of the oil decline rate.  It is evident that these initial experimental treatments generated 
15,000 bbl of incremental oil.  The recovery can be expressed as 4.5 lb of surfactant per barrel of 
incremental oil.  The wells were treated during last half of 2002 and early 2003 when the cost of 
surfactant was about $0.80/lb.  Today the surfactant cost is over $1.00/lb. 

Late in the project life Range Resources conducted three very well monitored tests in the 
West Fuhrman Masho field.  While not complete, one test appeared to be marginally successful.  
No response was observed at the others. 
 As available, the laboratory results were presented to Encore Acquisition, 
ConocoPhillips, Yates Petroleum, Range Resources, Texland Petroleum, Cano Petroleum, and 
Kinder Morgan.  Results of the San Andres laboratory work geared toward service company 
needs were also presented to Tiorco and Gel-Tec, small niche-type service companies located in 
Denver, Colorado, and Midland, Texas.   
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Approach 
 The project approach consisted of laboratory testing with reservoir systems followed by 
field tests if supported by laboratory results.  The resulting field tests will be included in a 
database that will be used to design and improve future field treatments.  This report is divided 
into a laboratory section and an engineering section to follow the approach used.  
 
Results and Discussion 
 

Part A Laboratory 
Spontaneous imbibition can be especially important to oil recovery from fractured 

reservoirs.  However, spontaneous imbibition does not take place if rocks are oil-wet or neutral-
wet.  Spontaneous imbibition only occurs when the pore surfaces are effectively water-wet so 
that the water imbibes into the rock matrix, and oil is produced into the fractures.  The oil can be 
flushed along the fractures toward the production wellbore.  This project investigated the use of 
chemicals to modify the wettability of reservoir rock to a more water-wet state in order to 
produce additional oil via spontaneous imbibition.  The significance of spontaneous imbibition 
as a recovery mechanism was first recognized for the naturally fractured water-wet Spraberry 
field of west Texas in the early 1950s,4 and oil recovery by spontaneous imbibition from the 
Spraberry field is still being promoted.5  Improved oil recovery with surfactants has been studied 
for over 40 years.  Craig6 showed that surfactants can alter the rock surface from oil-wet to 
surfactant-wet and then the oil can be displaced from the pores.  Stone et al.7 improved 
displacement-type oil recovery by altering the rock surface to oil-wet.  Extensive laboratory 
research on improved oil recovery from carbonate cores by imbibition of cationic and nonionic 
surfactant solutions has been reported by Spinler et al.8 and Austad et al.9  The surfactant 
interacts with and removes the adsorbed organic materials from the rock surface, which then 
becomes water-wet, and imbibition is enhanced.  Chen et al.2 reported the use of nonionic 
surfactants to stimulate oil wells in the Yates San Andres reservoir.  The average oil-production 
rate for one well increased from 35 to 67 barrels per day for an incremental 17,000 barrels of oil 
at the time of publication.  Improved recovery was ascribed to altering the rock surface 
wettability and/or gravity segregation of oil and water between the fracture and the matrix.  
Anecdotal evidence suggests that a number surfactant soak field tests were conducted in the 
Yates field.  Chen et al. reported the results of a single test.  Hirasaki and Zhang3 proposed the 
use of anionic surfactant with sodium carbonate.   

Past laboratory work conducted by the Correlations Company suggests that altering the 
wettability of core samples from the Phosphoria formation with either a non-ionic or a cationic 
surfactant produces incremental oil.10  A possible mechanism of improved imbibition recovery 
from the use of surfactant solutions may be the release of the adsorbed organic materials from 
the rock surface, which becomes more water-wet, so that the imbibition rate is increased. 
Surfactants also lower the IFT, therefore decreasing the capillary pressure.  The corresponding 
increase in the Bond number, σρ /2grNa = , probably contributed to improved oil recovery 
through gravity segregation.   
   
San Andres Fuhrman Masho Field 
 The San Andres formation in the Permian Basin consisted of about half of the laboratory 
part of the project. Encore Acquisition Company (Ft. Worth, Texas) provided the cores and 
fluids from the W. Boner Well No. 40, B and C zones in the Fuhrman-Masho field in Andrew 
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County, Texas. Yates Petroleum Corporation (Artesia, New Mexico) provided an additional 
1200 ft of whole San Andres core from the Eagle Creek field in Eddy County, New Mexico.  
Two crude oil/reservoir rock/brine systems were tested:  
 
1. Crude oil, reservoir core samples, and synthetic reservoir brine or synthetic seawater from the 

Fuhrman Masho San Andres field; 
2. Crude oil, reservoir core samples, and synthetic reservoir brine from the Eagle Creek San 

Andres field, or crude oil from the Fuhrman Masho San Andres field and synthetic seawater 
as the fluids. 

 
Brine Composition 
The laboratory testing included seven different surfactants. Cationic, nonionic, anionic, and 
amphoteric surfactants were tested. 

The following brines were used in the laboratory tests: synthetic reservoir brine based on 
the composition of Fuhrman Masho reservoir water, and designated as FM brine; synthetic 
reservoir brine, which represents the average Eagle Creek reservoir brine concentration, and 
designated as EC brine; and synthetic seawater based on North Sea water composition, 
designated as SW brine. Since the salinities of FM brine and EC brine were high, surfactants 
except for T91-8 could not fully dissolve in those brines at the designated concentrations. SW 
brine was used in the tests to make surfactant solutions.  All brine compositions are listed in 
Table 1. 
 

Table 1. Test brine composition and concentration (g/L) 
Composition FM brine SW brine EC brine 

NaCl 61.773 28 64.3 
KCl  0.935 0 
CaCl2 5.944 1.19 8.8835 
MgCl2 1.788 5.368 5.88 
Na2SO4 6.284 0 3.0 
NaHCO3 2.093 0 0 
Total dissolved solids, ppm 77,882 35,493 82,064 

 
Crude Oil Properties 
 The properties of the two crude oils used in the lab tests are shown in Table 2.  The 
reservoir temperature of the San Andres field was 40°C.  Before use the oils were filtered to 
remove any physical debris such as scale or corrosion products and then degassed to avoid 
component change during the course of experiments.   
 

Table 2. Crude oil properties 
Crude oil Density at 

20°C, g/ml 
API° Viscosity at 

40°C, cp 
Asphaltene content, 
wt% 

Wax content, 
wt% 

Fuhrman Masho 0.892 27.13 9.9 1.0 0.6 
Eagle Creek 0.844 36.15 4.2 - - 
 
Reservoir Core Properties 

The properties of the reservoir cores from the Fuhrman Masho San Andres field are listed 
in Tables 3 and 4. All cores were 1.5” in diameter and about 3” in length.  The porosity and 
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permeability of Fuhrman Masho reservoir cores ranged from 8–17% and 3–623 md, respectively.  
Porosity and permeability distributions are plotted in Figure 1. 
 
 

Table 3. Properties of Fuhrman Masho reservoir cores from C zone 

Core  
kg, 
md Swi, % φ, % Brine 

R by FM imb. 
% OOIP Surfactant, C 

R by surf. imb. 
% OOIP 

4378 560.0 0 16.5 FM 1.6 T91-8, 1500 ppm 32.5 
4390.3 91.0 0 13.9 FM 3.0 T91-8,3500 ppm 38.8 
4389.9 98.0 0 14.3 FM 1.5 T91-8, 1500 ppm 27.9 
4378.8 154.0 0 13.0 FM 1.5 T91-8,3500 ppm 23.5 
4377.9 483.0 0 16.3 FM 2.0 T91-8,3500 ppm 45.6 
4378.2b 407.0 0 16.0 FM 1.1 T91-8, 1500 ppm 16.7 
4391b 623.0 0 20.0 FM 1.7 T91-8, 1500 ppm 38.0 
4391a 359.0 0 16.6 FM 1.5 T91-8,3500 ppm 32.9 
4384.3 5.1 59.1 19.6 FM 0.0 T91-8,3500 ppm 9.4 
4384.2 5.4 38.2 18.9 FM 0.0 T91-8, 1500 ppm 10.0 
4390b 48.0 31.9 15.0 FM 0.0 T91-8,3500 ppm 21.8 
4390a 80.0 25.4 13.9 FM 0.0 T91-8, 1500 ppm 16.6 
4378.3 19.6 0 14.7 SW 6.9 MCB, 3000 ppm 26.0 
4379.8 55.0 17.7 10.3 SW 1.0 MCB, 3000 ppm 2.4 
4379.3 100.0 21.1 10.1 SW 0.0 MCB, 3000 ppm 6.9 
4379.4 6.3 0 9.9 SW 3.0 C-50, 3000ppm 36.7 
4378.2a 58.0 22.2 10.3 SW 0.0 T91-8, 3000 ppm/FM 19.0 
4377.8 524.0 17.3 17.1 SW 0.0 T91-8, 3000 ppm/FM 48.2 
4383.9 887.0 13.4 17.4 SW 0.0 T91-8, 3000 ppm/SW 31.1 
4378.9 144.0 13.6 12.3 SW 0.8 Iw-o   
4379.7 25.2 17.8 9.8 SW 0.0 RCD128, 3000 ppm 0.7 
4379.5 6.4 0 9.6 SW 5.9 RA246, 3000 ppm 0.0 
4379.1 147.0 20.2 12.6 SW 0.0 RA246, 3000 ppm 5.0 
4379.2 141.0 19.94 11.7 SW 1.2 RA246, 3000 ppm 0.0 
4385.2a 3.4 0 14.8 FM 13.2 T91-8, 3000 ppm 12.4 
4384.6b 1.7 0 14.5 FM 34.8 T91-8, 3000 ppm 2.6 
4384.5b 2.3 0 15.9 FM 27.1 T91-8, 3000 ppm 7.8 
4385.4b 17.4 0 15.2 FM 22.0 T91-8, 3000 ppm 12.6 
4385.4a 19.3 0 15.2 FM 11.8 T91-8, 3000 ppm 15.0 
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Table 4. Properties of Fuhrman Masho reservoir cores from B zones 

Core # kg, md Swi, % φ, % Brine 
R, FM imb. 
brine,% OOIP Surfactant 

R, surf. imb. 
% OOIP 

4340.5 14.0 0 11.8 FM 3.0 T91-8,3500 ppm 5.5 
4340.6 27.0 0 12.6 FM 2.2 T91-8, 1500 ppm 4.8 
4341.3 0.3 0 5.6 SW 0.0 T91-8, 3000 ppm 0.0 
4341.6 0.2 0 1.1 SW 0.0 T91-8, 3000 ppm 0.0 
4341.7 0.2 0 0.5 SW 0.0 T91-8, 3000 ppm 0.0 
4341.2 3.6 0 7.3 SW 5.4 MCB, 3000 ppm 0.0 
4340.4 7.5 0 10.8 SW 5.6 RA246, 3000 ppm 0.0 
4340.9 3.5 0 15.6 SW 6.8 C-50, 3000 ppm 0.0 
4349.3 13.1 0 9.0 FM 7.6 T91-8, 3000 ppm 0.0 
4329.9 3.4 21.1 7.8 FM 0.8 T91-8,3500 ppm 0.0 
4329.8a 12.0 11.9 8.8 FM 0.0 T91-8, 1500 ppm 0.0 

4329.8b 10.5 0 8.8 SW 6.9 T91-8, 3000 ppm 0.0 
4328.3 5.0 0 7.4 SW 6.2 L-64, 3000 ppm 0.0 
4328.0 3.7 0 6.8 SW 9.8 T91-8, 3000 ppm 0.0 
4327.8 2.9 0 5.4 SW 5.9 RCD128, 3000 ppm 0.0 
4328.4 4.1 0 7.2 SW 8.3 L-64, 3000 ppm 0.0 
4329.1 13.9 0 9.8 SW 8.3 RCD128, 3000 ppm 0.0 
4328.7 25.0 0 9.8 SW 8.5 Iw-o   
4327.9 5.2 19.0 7.0 SW 0.0 T91-8, 3000 ppm 0.0 
4329.6 5.0 25.2 8.6 SW 0.0 L-64, 3000 ppm/SW 0.0 
4328.9 10.4 20.9 8.5 SW 1.6 L-64, 3000 ppm/SW 1.1 
4328.8 25.1 19.2 9.5 SW 0.4 RCD128, 3000 ppm/SW 0.0 
4327.7a 0.6 0 4.7 FM 8.1 T91-8, 3000 ppm 0.0 
4327.1a 3.4 0 5.2 FM 4.0 T91-8, 3000 ppm 0.0 

4327.8b 8.4 0 6.8 FM 5.5 T91-8, 3000 ppm 0.0 

4327.1b 5.5 0 6.3 FM 4.1 T91-8, 3000 ppm 0.0 

4329.7 14.0 0 9.1 FM 5.7 MCB, 3000 ppm 1.0 

4327.6b 0.3 0 2.9 FM 2.5 MCB, 3000 ppm 0.0 
4327.2a 4.8 0 6.0 FM 3.0 MCB, 3000 ppm 0.0 
4327.6a 1.3 0 4.4 FM 10.4 MCB, 3000 ppm 0.0 

4329.9b 1.0 0 6.1 FM 4.4 T91-8, 3000 ppm 0.0 

4329.7b 13.1 0 9.7 FM 7.4 T91-8, 3000 ppm 0.0 
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Figure 1. Distribution of permeability and porosity of Fuhrman Masho cores. 

 
The porosities of most cores from the B and C zones were around 10%.  The 

permeabilities of most cores from the C zone were higher than those from the B zone.  B zone 
permeability ranged from 0.2–25 md, and C zone permeability ranged from 5–880 md. 

Properties of the reservoir cores from the Eagle Creek San Andres field are listed later in 
Table 9.  All the cores were 1.5” in diameter and about 3” in length.  Comparably, Eagle Creek 
cores were tighter and less permeable; the porosity and permeability ranged from 3–14% and 
0.1–26 md, respectively (Figure 2).   
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Figure 2. Distribution of permeability and porosity of Eagle Creek cores. 

Thin sections of Fuhrman Masho and Eagle Creek rocks are shown in Figures 3 and 4. 
 

 
Figure 3. Thin sections of Fuhrman Masho rock. 
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Mineralogy analysis of the rock by thin section demonstrates that the Furman Masho rock 
consisted of grainstone dolomite containing minor anhydrite and calcite (Figure 3); the Eagle 
Creek rock consisted of wackestones or packstones containing dolomite, calcite, and some 
anhydrite (Figure 4). 

 

 
Figure 4. Thin sections pictures of Eagle Creek rocks. 

Cedar Creek thin sections indicate that the Interlake rock contained dolomite crystals and 
small clay particles with good connection between pores.  Stony Mountain rock is clay-rich and 
heterogeneous, and contained smaller dolomite crystals than the Interlake rock.  Red River rock 
also contained small dolomite crystals, anhydrite particles, a clay-rich band, fossils, and moldic 
pores.  The photomicrographs are presented later in the report.  
 
Surfactant and Interfacial Tension Measurements 
All of the chemicals and related properties are listed in Tables 5 and 6. 
 

Table 5. Physical and chemical properties of four surfactants 
Properties L64 (Pluronic, Antarox) Arquad C-50* Tomadol 91-8 Triton X100 
Chemical name Ethylene and propylene 

oxide 
Cocoalkyltrime-
thyl ammonium 
chloride 

Poly (2.5 or 6 or 
8) oxyethylene 
C9-11 alcohol 

Alkylaryl polyether 
alcohol 

Type nonionic cationic nonionic nonionic 
Simplified as L64 C-50 T91-8 X100 
Chemical formula HO(C2H4O)a(C3H6O)b(C2

H4O)CH 
RN(CH3)3Cl  
R = cocoalkyl 

ROCH2CH2O)nH  
R = C9/C10/C11 

C14H22O(C2H4O)n 
(n = 9 or 10) 

Chain length 14 12–16 9–11 ~ 9.5 
Equivalent weight 2900 278 524 250 
pH 5.0–7.5 6–7 - 6–8 (5% solution) 
Surface tension at 0.1 
mol, dynes/cm 

43 31 (0.1% 
aqueous) 

30 - 

Cloud point, °C 58 (1% aqueous) - 80 66 (1% aqueous) 
Hydrophilic and 
lipophilic balance 
value (HLB) 

15 23 13.9 13.5 

CMC at 30°C soluble < 1 m mol  or 
278 ppm 

about 1 m mol at 
25°C, or 524  

0.22–0.24 m 
mol or 138 
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ppm  - 150 ppm 
Commercial 
concentration, (wt%)* 

~ 100 ~ 45–55 ~ 100 ~ 97 

*Commercially supplied Arquad C-50 contains about 30–35% of CH3-CH3-CHOH and 10–20% of water 
besides the surfactants. 
 

Table 6. Physical and chemical properties of other surfactants 
Product name Rhodacal A 246 L Rhodapex CD 128i Mirataine CB 
Chemical name Sodium alpha-olefin 

sulfonate 
Ammonium C6-10 
alkyl ether sulfate 

Cocamidopropyl 
betaine 

Designated as RA-246L CD-128 MCB 
Type  Anionic  Anionic Amphoteric 
Properties Emulsifier  Foam stablizer agent - 
Carbon chain length 14 - 16 - - 
Commercial concentration, (wt%)*    
 

The first step in the laboratory tests was to determine the CMCs of the surfactants.  This 
was achieved by measuring IFTs between surfactant North Sea water (SW) brine solutions with a 
series of concentrations and Soltrol 220 mineral oil at room temperature.  The IFTs of the 
various surfactants are plotted in Figures 5 and 6.   
 

 
Figure 5. Interfacial tensions of nonionic surfactant solutions and Soltrol. 
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Figure 6. Interfacial tensions of cationic, anionic, and amphoteric surfactant solutions and Soltrol 220. 

 
After CMCs of all the surfactants were examined, proper surfactants and concentrations 

were selected for the spontaneous imbibition tests for reservoir rock/crude oil/brine systems. 
According to the IFT measurements and previous laboratory and field experience, the 

nonionic surfactants T91-8 and L-64, anionic surfactants RA-246L and CD-128, and the 
amphoteric surfactant MCB were selected for oil recovery improvement.  The surfactant 
solutions were the mixture of the designated synthetic reservoir brine with each surfactant at 
concentrations of 1,500–3,500 ppm.  The San Andres reservoir temperature of 40°C was used for 
the test temperature.  The related IFTs between crude oil and surfactant solutions are listed in 
Table 7 and 8. 
 

Table 7. IFTs between San Andres crude oil and surfactant solutions 
 IFT, mN/m 
Concentration L64 RA-246L C-50 T91-8 CD-128 TX100 MCB 
0 49.55 
2 45.47       
10 26.23 26  27.06 17.5  32 
20 18.98 17 21.49 23.50  18.58 25.4 
25     10   
50 15.92 8.8 15.31 19.50 6.5 12.76 15.4 
100 14.53 5.3 10.09 16.03 3.2 8.50 10.6 
200 13.15 3.3 6.97 11.57 3.49 5.36 8.5 
300    9.65    
400  2.2  8.60   6.8 
500 11.88  5.37 8.05 3.66 3.10  
750  1.7  6.68   6.4 
1000 10.65 1.6 5.31 5.65 3.78 2.36 5.9 
2000 9.31 1.5 5.30 4.41  1.87 5.9 
3000 8.65   4.08  1.74  
4000   5.20     
5000  1.5     5.8 
6000    3.50    
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Table 8. Crude oil properties and related IFTs (mN/m) 
Crude oil Eagle Creek crude oil Fuhrman Masho crude oil 
Measurement temperature, °C 40 40 
Brine  EC brine FM brine SW brine 
Brine with no surfactant added 30.2 17.2 20.9 
Brine with 3000 ppm T91-8 added 3.6 2.0 2.6 
Brine with 3000 ppm L-64 added - - 0.2 
Brine with 3000 ppm RCD-128 added - - 1.5 
Brine with 3000 ppm MCB added - - 1.6 
Brine with 3000 ppm RA-246L added - - 0.28 
 
Laboratory Procedures 

Reservoir cores with different permeabilities and initial water content Swi were tested for 
spontaneous imbibition, both in synthetic reservoir brine and surfactant solutions.  The test 
procedure for initial water saturation 0>wiS  is listed as follows:  
1) Saturate the cores with brine and allow cores to sit in brine for at least 7 days for ionic 
equilibrium;  
2) Displace the brine from the core with crude oil until designated initial water saturation Swi is 
reached or no water can be displaced;  
3) Age the cores for 10 days at 40°C;  
4) Displace the aged crude oil from the aged core with fresh crude oil at 40°C;  
5) Immerse the cores in test brine for imbibition until no oil is produced;  
6) Immerse the cores in surfactant brine solution for imbibition.   
 For 0=wiS , the cores were saturated with crude oil directly by vacuum and then the 
above procedure was followed starting from step 3. 
 
Results 
Fuhrman Masho rock/crude oil/FM brine and/or synthetic seawater 
 
T91-8 surfactant 
Fuhrman Masho (FM) cores from the C and B zones were tested with T91-8 formation water 
solutions; concentrations ranged from 1500–3500 ppm.  Shown in Figures 7 and 8 are the oil 
recovery versus spontaneous time of FM cores from the C zone with FM brine and surfactant 
T91-8.  
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Figure 7. Oil recovery by imbibition for Fuhrman Masho C zone rock/crude oil/FM brine and T91-8 solution 

(Swi = 0). 
 

 
Figure 8. Oil recovery by imbibition for Fuhrman Masho C zone rock/crude oil/FM brine and T91-8 solution 

(Swi >0). 

Cores from the B zone are plotted in Figures 9 and 10.   
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Figure 9. Oil recovery by imbibition for Fuhrman Masho B zone rock/crude oil/FM brine and T91-8 solution 

(Swi = 0). 

 

 
Figure 10. Oil recovery by imbibition for Fuhrman Masho B zone rock/crude oil/FM brine and T91-8 

solution (Swi > 0). 

These figures show that the maximum oil recovery by imbibition from brine for this 
batch of cores from the B zone was only about 3%.  After the cores were soaked in a T91-8 brine 
solution, cores from the C zone produced more oil.  Oil recovery by imbibition was improved by 
up to 35%, demonstrating a sound response to surfactant treatment (see Table 3).  Furman Masho 
rock consists of grainstone dolomite containing minor anhydrite and calcite.  As indicated from 
previous studies,10  T91-8 effectively enhances oil recovery from dolomite rocks.  

However, for cores from the B zone, it appears that the effect of the T91-8 concentration 
was poor.  All of the oil recoveries by brine and improved by surfactants are listed in Table 4.  
The mineralogy of cores from both B and C zones is similar, but the effect of the surfactant is 
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obviously different.  The permeability of cores from the B zone is much lower than that from the 
C zone.  The permeability may be the most important factor in the surfactant mechanism of 
improved oil recovery in these tests, as reported previously.10   

Shown in Figure 11 are the incremental oil values (termed enhanced oil recovery on the 
graph) versus bulk volume oil (BVO) for the 16 plugs, from both B and C zones.  BVO is 
defined as the product of porosityφ, and oil saturation wiS−1 , 

100*)1( wiSBVO −= φ . 
 

 
Figure 11. Data set consists of both "B" & "C" zone core plugs. 

The trend suggests that the higher the BVO (more oil available), the greater the oil 
recovery.  Overall the higher concentration of surfactant solution (1500 or 3500 ppm) resulted in 
slightly higher oil recovery with a few exceptions.  The data for the B and C zone samples are 
presented in Figures 12 and13, respectively.    A summary of the oil recovery versus BVO is 
shown in Figure 14. 
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Figure 12. Data set consists of B zone plugs. 

 

 
Figure 13.  Data set consists of C zone plugs. 
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Figure 14. Summary of BVO versus oil recovery from both B zone and C zones. 

 
Other surfactants 

Our objective was to investigate the effect of the proposed surfactants, including T91-8, 
on oil recovery by imbibition of dolomite rocks.  Other surfactants included a cationic surfactant 
C-50, anionic surfactants CD-128 and RA246, a nonionic surfactant L-64, and an amphoteric 
surfactant MCB.   

As shown in Figure 15, all the surfactants had positive effects on the C zone cores; C-50 
and MCB improved oil recovery up to 25%.  
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Figure 15. Examples of C zone cores with other surfactants (Swi = 0). 

 
 Except for L-64, all other surfactants did not improve oil recovery in any of the B zone 

cores (Figures 16 and 17).  Since the permeability of the B zone cores is low, there may not have 
been enough surfactant solution to reach the pores in order to expel the oil. 

 

 
Figure 16. Examples of B zone cores with other surfactants (Swi = 0). 
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Figure 17. Examples of B zone cores with other surfactants (Swi > 0).  

 
Researchers from the Austad group indicate that sulfate ions in brine can have positive 

effect on how much surfactant improves oil recovery.11  To verify this, Na2SO4 was added to the 
surfactant solutions during the imbibition tests.  No obvious effect was observed.  

 
Summary 
The brine imbibition oil recovery from Fuhrman Masho cores ranged from 0–4% of the 

OOIP.  Immersion in a T91-8 surfactant solution resulted in additional recovery of up to 38% of 
the OOIP.  The laboratory results imply that both zones are candidates for the surfactant soak 
process with the C zone showing much better response. 
 
San Andres Eagle Creek Field 
 The San Andres at Eagle Creek is on the northwest edge of the Permian Basin near 
Artesia, New Mexico.  The dolomitized section of the reef is found at about 1400 ft as opposed 
to the Fuhrman Masho that is located deeper in the Basin at about 4400 ft. 
  
Laboratory Tests  

The fluid Eagle Creek fluid properties were described earlier, and the core properties are 
shown in Table 9. 
 

Table 9. Properties of Eagle Creek reservoir cores 
Core # kg, 

md 
Swi, % φ, % Brine 

used 
Oil 
used 

R, imb. brine, 
% OOIP 

Surfactant 
(3000 ppm) 

R, surf. imb. % 
OOIP 

1300 1 0 10.33 EC EC 19.44 T91-8  0 
1352.8 2.6 0 10.31 EC EC 25 T91-8 0 
1387.0 6.1 0 10.94 EC EC 3.47 T91-8 0 
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1387.2 12.8 0 12.19 EC EC 3.47 T91-8 0 
1387.5 34 0 13.37 EC EC 3.03 T91-8 0 
1299.5 1.2 48.4 11.7 EC EC 1.3 T91-8 0 
1352.0 18.1 13.0 13.1 EC EC 0 T91-8 0 
1354.8 6.4 8.5 11.2 EC EC 0 T91-8 0 
1354.9 6.2 8.2 10.2 EC EC 0 T91-8 0 
1354.0 1.1 15.5 7.5 EC EC 0 T91-8 0 
1351.1 0.4 0 6 SW FM 3.96 T91-8 1.66 
1351.3 0.5 0 6 SW FM 1.9 T91-8 1.27 
1388.8 0.7 0 9.8 SW FM 13.77 L-64 6.07 
1298.1 0.3 0 3.7 SW FM 0 L-64 1.79 
1299.0 0.6 0 9.2 SW FM 29.46 RCD-128 0.63 
1298.9 0.2 0 3.1 SW FM 1.26 RCD-128 1.73 
1299.2 0.7 0 10.8 SW FM 33.79 MCB 0 
1298.0 0.3 0 3.7 SW FM 2.25 MCB 0 
1304.5 0.1 0 4.7 SW FM 7.67 RA-246L 0 
1304.3 0.3 0 6.7 SW FM 0 RA-246L 0 
1387.8 26.4 6.6 13.95 SW FM 0 T91-8 0 
1352.9 1.5 30.8 10.44 SW FM 5.78 T91-8 0 

1 1355.0 6.8 8.1 10.25 SW FM 0 L-64 0 
1386.0 1.6 9.8 7.34 SW FM 0 L-64 0 
1386.8 3.4 7.5 9.31 SW FM 0 RCD-128 0 
1388.4 1.7 15.4 8.5 SW FM 0 RCD-128 0 
1388.1 7.6 6.0 10.26 SW FM 0 MCB 0 
1386.2 5.2 3.4 8.95 SW FM 0 MCB 0 
1353.0 6.7 9.5 10.13 SW FM 2.06 RA-246L 0 
1352.7 7.2 16 13.8 SW FM 0 RA-246L 0 

 
Results 
 
EC crude oil/EC brine and T91-8 solution (3000 ppm) 

The initial water saturation wiS  was zero for all cores shown in Figure 18.  The oil 
recovery from brine imbibition ranged from 3–20%.  Spontaneous imbibition in a 3000 ppm 
T91-8 solution did not result in any extra oil recovery.   
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Figure 18. Oil recovery versus imbibition for Eagle Creek rock/oil/EC brine and T91-8 solution (Swi = 0). 

 
Cores with 0>wiS  are shown in Figure 19. After 10–15 days of imbibition in brine, only 

core #1299.5 produced about 1.5% of the OOIP; no oil was produced from the other cores.  No 
oil was produced from any of the five cores after soaking in 3000 ppm of the T91-8 solution.   

 

 
Figure 19. Imbibition tests of Eagle Creek rock/oil/EC brine and T91-8 solutions (Swi > 0). 
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Apparently, T91-8 did not affect the oil recovery of the Eagle Creek system.  We have 
encountered a similar situation; T91-8 improved oil recovery for dolomite cores but had no effect 
on cores with calcite.10  Eagle Creek rock consists of wackestones or packstones containing 
dolomite, calcite, and some anhydrite, and the permeability is generally low.  Most of the cores 
are less than 20 md in permeability.  

Methanol is used in well treatment fluids and may change the wettability of the rock to 
more water-wet.  Hence, alcohol was evaluated in the Eagle Creek system on the outside chance 
that the surfactant imbibition performance could be improved.  After the imbibition tests in 
surfactant solutions, Eagle Creek cores were submersed in a series of different concentrations 
(10%, 20%, 30%, 40%, 50%, and 80%) of ethanol/Eagle Creek brine solutions.  Ethanol was 
used to replace methanol for safer and easier operation.  No oil was produced after more than 10 
days of soaking, further indicating the unfavorable wettability. 

 
EC rock/FM crude oil/SW brine and surfactant solutions 

The Eagle Creek reservoir rock/Fuhrman Masho crude oil/seawater system utilized five 
different surfactants (Tables 5 and 6) to improve the oil recovery by spontaneous imbibition.  
The properties of the core samples were shown earlier in Table 9.  Ten core samples were 
originally saturated with crude oil (Swi = 0); another 10 samples had connate water saturation Swi 
= 3.4–30.8%.  Four core samples were used for each surfactant.   

Oil recovery versus imbibition times for Swi = 0 and Swi > 0 are plotted in Figures 20–23, 
respectively.  

 

 
Figure 20. Imbibition oil recovery for FM oil/Eagle cores/seawater system. 
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Figure 21. Imbibition oil recovery for FM oil/Eagle cores/seawater system (more surfactants). 

 

 
Figure 22. Imbibition oil recovery for Eagle cores/FM oil/seawater system. 
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Figure 23. Imbibition oil recovery for Eagle cores/FM oil/seawater system (more surfactants). 

 

 For Swi = 0, some cores had an oil recovery up to 33% by seawater imbibition and an 
additional 6% oil recovery by surfactant imbibition.  But some cores had no oil recovery by 
imbibition either in seawater or surfactant solutions, indicating the heterogeneous nature of the 
carbonate rocks.  Using core #1388.8 as an example, oil recovery by seawater imbibition was 
13.16%; additional oil recovery by imbibition in an L-64 solution was about 6%.  However, for 
core #1298.1, neither soaking in seawater nor L-64 surfactant solution resulted in any oil 
production. 

For Swi > 0, only cores #1352.9 and #1353.0 produced oil by seawater imbibition, though 
the recovery was very small.  None of the other cores produced any oil by either seawater or 
surfactant imbibition.  In these cases, none of the five surfactants improved oil recovery. 

In an effort to determine the poor imbibition oil recovery in the Eagle Creek system, the 
Amott index wettability of the cores was measured.  The Amott index of one core, #1387.5 after 
soaking in T91-8, was measured, 49.0−=−owI , meaning that the core was medium oil-wet.  The 
index indicates that soaking in T91-8 did not alter the oil-wetness of the core.  This core imbibed 
water while it was soaked in brine and behaved like it was oil-wet after soaking in a T91-8 
solution.  Therefore, oil recovery in Eagle Creek cores by the surfactants was not improved.  The 
heterogeneity of the rock increased the complexity of the problem.  Another aspect of the 
ineffectiveness of the surfactant may be related to the rock lithological properties.  The Eagle 
Creek rock consisted of wackestones or packstones containing dolomite, calcite, and some 
anhydrite.  Perhaps the rock minerals interfered with surfactant reaction on dolomite so the 
wettability of the rocks remained unchanged.      

None of the tested surfactants had a positive effect on Eagle Creek reservoir cores.  For 
Eagle Creek crude oil/EC brine and Fuhrman Masho crude oil/seawater, oil recovery by 
spontaneous imbibition was poor both in water and in various surfactant solutions.  At least one 
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core appeared oil-wet after soaking in a surfactant T91-8 solution.  The surfactants tested in this 
project were not suitable for improving oil recovery in the Eagle Creek field.   

 
Cedar Creek Anticline Dolomite Fields 

In terms of oil producing rate on the Cedar Creek Anticline, the Red River formation is 
the #1 producer, the Stony Mountain is the #2 followed by the Interlake formation.  The dolomite 
formations are highly heterogeneous.  The laboratory objective was to find surfactants to 
improve oil recovery by spontaneous imbibition.  The reservoir temperature is high at 200°F, and 
the usual surfactants are not stable at high temperature in high salinity water.  The anionic 
surfactants Rhodapex CD 128i (CD-128) and Rhodacal A 246 L (RA-246L) were used for the 
laboratory tests.  The high temperature imbibition tests were performed at the ConocoPhillips 
Technical Center (Bartlesville, Oklahoma). 
 
Brine Composition 

The produced water from all formations varied considerably due to 50 years of 
waterflood operations.  The representative water analysis for the three formations obtained from 
Encore Acquisition Co. is listed in Table 10.  The synthetic laboratory brine composition listed 
in Table 11 was the modification of the formation water analysis.  HCO3

- was removed to avoid 
the precipitation of bi-carbonate salts.   
 

Table 10. Water analysis from Encore Acquisition Co. 
Constituent Interlake water, mg/L Stony Mountain water, mg/L Red River water, mg/L 
Ca++ 421 2611 2363 
Mg++ 85 453 560 
Na+ 4610 9871 16398 
K+ 35 70 400 
HCO3- 439 235 261 
SO4-- 700 1600 1080 
Cl- 7365 19914 30523 
Total dissolved solids, 
ppm 

13655 34755 51585 

 
Table 11. Composition of laboratory synthetic formation water 

Composition Interlake water, g/L Stony Mountain water, g/L Red River water, g/L 
CaCl2 1.168 7.246 6.557 
MgCl2 0.333 1.777 2.196 
KCl 0.067 0.134 0.763 
Na2SO4 1.035 2.127 1.598 
NaCl 10.873 23.766 40.391 
TDS, ppm 13476 35050 51504 
 
Crude Oil Properties 
 Crude oils were from the same Cedar Creek Anticline dolomite reservoir.  Operators in 
general have had difficulty obtaining representative oil samples from these producing 
formations.  Oil samples from the wells were obtained just prior to the end of the chemical 
treatment cycle.  Before use all oils were filtered to avoid any debris such as corrosion or scale 
products and degassed to avoid component change during the course of experiments (Table 12). 
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Table 12. Crude oil properties 

Crude oil 
density at 22°C, 
g/ml API gravity, ° viscosity at 22°C note 

Interlake 0.8902 27.5 51.4 Shallowest formation 
Stony Mt. 0.8854 28.3 21.9 Middle formation/crude precipitation 

Red River 0.8727 30.6 18.6 Deepest formation 
 

Crude oils from Interlake and Red River formations were stable during the experiments.  
The crude oil from the Stony Mountain formation precipitated at room condition.  Other 
researchers have observed the precipitation of Stony Mountain oil even after filtering by core 
plugs.  It was not obvious that the precipitates were asphaltenes.   

Initially a technique consisting of ultrasonic agitation to dissolve the precipitates was 
applied to samples of the Stony Mountain crude oil.  The photomicrographs from before and 
after agitation as shown in Figure 24 demonstrate that vibration alone did not solubilize the 
precipitates.  

 

 
Figure 24. Stony Mountain Crude oil before (left) and after (right) sonic agitation and mixing. 

 The crude was then heated and maintained at 75oC for 2 hours before ultrasonic mixing.  
This procedure did not affect the precipitates as shown in Figure 25.   
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Figure 25. Heating followed by sonic mixing did not dissolve the precipitate. 

Since asphaltene is soluble in naphthalene, xylene, and toluene, 20%, 50%, and 80% by 
volume of 1-methylnaphthalene was added to the crude as a means of identifying the precipitate.  
Figure 26 shows that the precipitates dissolved at all concentrations of solvent.  Thus, the 
conclusion is that the particles are indeed asphaltenes. 

 

 
Figure 26. Left to right 80, 50, and 20% 1-methylnaphthalene added to Stony Mountain crude oil. 

 
Reservoir Core Properties 

The reservoir cores were obtained from the BEG core repository in Midland, Texas, and 
the plugs were cut by SCAL, Inc.  The core samples from those dolomite formations were 1” in 
diameter.  Some cores remained as non-cleaned; other cores were cleaned with toluene and CO2.  
Gas permeability and porosity were measured for all cores.  For non-cleaned cores, porosity and 
gas permeability were measured again after the cores were fully used and tested. Porosity ranged 
from 3–24%; permeability by SCAL, Inc., ranged from 0.02–148 md (Table 13).  Porosities from 
the three zones were similar, but the permeabilities of Stony Mountain and Red River cores were 
much lower than that of the Interlake cores.   
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Table 13. Reservoir cores from Cedar Creek anticline 

Core# If clean L, 
cm 

Kg, md Kg after 
use, md 

φ, % φ after 
use, % 

Initial water saturation 
Swi, % 

Red River cores  
RR13 Cleaned by 

CO2/C7H8 
3.72 3.48  

- 
24.35  

- 
13.2 

RR14 Cleaned by 
CO2/C7H8 

3.745 3.96 - 23.62  
- 

12.8 

RR15 Cleaned by 
CO2/C7H8 

3.757 4.11  
- 

17.3  
- 

8.0 

RR20 Cleaned by 
CO2/C7H8 

3.47 13.01  
- 

6.8  
- 

0.9 

RRU 
8719.75 

Oil residue 4.71 0.27 0.35 10.83 10.85 0 

RRU 
8713.5 

Oil residue 3.8 0.3 0.55 12.3 12.4 0 

RRU 
8715.35 

Oil residue 5.12 1.47 1.8 17.21 17.3 0 

Stony Mountain cores  
St 8188B Looked 

clean 
4.858 0.31 - 9.62 - 0 

St 8801B Looked 
clean 

4.69 0.2 - 10.26 - 0 

St 8801A Looked 
clean 

5.137 0.1 - 8.7 - 0 

St 8800 Looked 
clean 

5.35 0.14 - 11.46 - 0 

St 8785 Looked 
clean 

5.439 0.02 - 2.98 - 0 

St 8831A Looked 
clean 

4.618 0.92 - 11.22 - 0 

St 8293 Looked 
clean 

5.503 0.92 - 9.43 - 4.6 

St 8831B  Looked 
clean 

4.981 0.49 - 7.09 - 2.8 

St 8845A Looked 
clean 

4.125 4.41 - 14.52 - 5.6 

St 8848A Looked 
clean 

3.714 1.88 - 13.07 - 5.8 

Interlake cores  

IL 8230.65 Oil residue 5.5 148 148 11.69 11.69 0 

IL 8286.35 Oil residue 4.68 21.5 22.1 7.62 7.4 0 

 
Permeabilities and porosities are shown graphically in Figure 27.  
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Figure 27. Permeabilities and porosities of all the cores. 

 
Thin sections for rock samples indicated that the Interlake rock contained dolomite 

crystals and small clay particles (Figure 28) with good connection between pores.   
 

 
Figure 28. Thin section of Interlake dolomite. 

Stony Mountain rock was clay-rich and heterogeneous and contained smaller dolomite 
crystals than the Interlake rock (Figure 29).  
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Figure 29. Thin section of Stony Mountain dolomite. 

Red River rock also contained small dolomite crystals, anhydrite particles, a clay-rich 
band, fossils, and moldic pores (Figure 30). 

 

 
Figure 30.  Thin section of Red River dolomite. 

 
Surfactant Solutions 

ConocoPhillips' previous experience with the anionic surfactants Rhodapex CD 128i 
(CD-128) and Rhodacal A 246 L (RA-246L) demonstrated improved oil recovery in chalk at a 
test temperature of over 212°F (100°C).  These two surfactants (Table 14) were selected as the 
chemical agents to improve recovery of imbibition oil for carbonate rocks from the three Cedar 
Creek Anticline formations.  However, Porter12 pointed out that anionic sulfates contain a C-O-S 
bond that may not be chemically stable at temperatures higher than 122°F (50°C).  To ensure 
chemical stability, CD-128 and RA-246L at a concentration of 1000 ppm were diluted with the 
formation waters.  This concentration was used for all surfactant solutions in the spontaneous 
imbibition tests.  The solutions were aged for 24 hours at 200°F.  IFTs were measured by the 
drop volume method for both original and aged solutions at room temperature (71°F) except for 
RA-246L solutions, which were measured at 104°F.  The RA-246L Interlake water solution was 
clear since the salinity of the Interlake water was relatively low.  Precipitation appeared in RA-
246L with Stony Mountain and Red River waters at room temperature, and the solutions became 
clear when the solution temperature reached 104°F (40°C) or higher.  The IFTs are listed in 
Table 15.  It appeared that the CD-128 was thermal stable since the IFTs only increased slightly 
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after aging.  The IFTs of the RA-246L solutions were too small to be measured by the drop 
volume method (The accuracy of the drop volume method is ± 0.1 dynes/cm).   
 

Table 14. Physical and chemical properties of anionic surfactants CD-128 and RA-246L 
Product name Rhodapex CD 128i Rhodacal A 246 L 
Chemical name Ammonium C6-10 alkyl ether sulfate Sodium alpha-olefin sulfonate 
Simplified as CD-128 RA-246L 
pH 7 at 10 wt% - 
Commercial concentration, (wt%) ~ 56–60 39 
 
 

Table 15. IFT measurements of anionic surfactants CD-128 and RA-246L 
               Brine 
 
Crude oil 

Formation water 
(71°F) 

CD-128 solution 
(71°F) 

Aged CD-128 solution 
(71°F)  

RA-246L solution 
and aged solution 
(104°F) 

Interlake (IL) 26.5 2.1 4.0 < 0.1 
Stony Mt. (ST) 26.2 0.9 2.1 < 0.1 
Red River (RR) 32.8 1.8 2.4 < 0.1 
 
Laboratory Procedure 

Clean cores were first saturated with formation water.  After at least 10 days of soaking, 
the cores were set on porous plates for water displacement to establish initial water saturation.  
Then the cores were weighed, and crude oil from the same formation was introduced by vacuum.  
Cores with oil residue were directly saturated with the crude oil.  Imbibition tests at 200°F with a 
backpressure of 12 psi were performed at the ConocoPhillips Technical Center after the 
wettability was restored by aging all cores in crude oil at 200°F.  The cores were first soaked in 
formation waters to imbibe.  After the brine imbibition stopped, the cores were transferred to 
surfactant solutions for further spontaneous imbibition.   

Nuclear Magnetic Resonance (NMR) Carr–Purcell–Meiboom–Gill (CPMG) 
measurements13 were performed on all cores before brine imbibition, before surfactant 
imbibition, and after surfactant imbibition.  The objective was to verify the indirect NMR 
measurements of porosities and water saturations of the cores at various imbibition stages with 
direct physical measurements.   

 
Results 
The effect of brine pH and ionic strength on the IFTs 

The effect of brine pH and ionic strength on the IFTs between brine and crude oil from 
the Interlake, Stony Mountain, and Red River formations were investigated.  Brine with pH 
values from 2–12 and Na+ ionic strengths from 0.01 M–1 M was used in the measurements.  The 
results were compared with that of a standard oil–n-decane.  To make Na+ buffer solutions with 
different pH values and different ionic strengths, the following chemicals from strong acids to 
strong bases were used: HCl, CH3COOH, CH3COONa, Na2HPO4, NaH2PO4, Na2CO3, NaHCO3, 
NaOH, and NaCl.   

The IFTs between three oils and brines with different pH values and ionic strength are 
shown in Figures 31–33.  All the IFTs had the similar trend in comparison with that of decane.  
When pH = 5–11, only the pH and ionic strength affected the IFTs slightly.  On the acidic side 
(pH < 5), the IFTs decreased with the decrease of the pH value; an ionic strength of 1 M had the 
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lowest IFTs.  On the basic side, pH also decreased when the pH value increased; the effect of 
ionic strength was not obvious. 

 

 
Figure 31. Interlake oil IFTs as a function of pH.. 

 
Figure 32. Stony Mountain oil IFTs as a function of pH.. 
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Figure 33. Red River oil IFTs as a function of pH.. 

 
Spontaneous Imbibition 
Stony Mountain Cores 

Core plugs were cut from whole core from wells 22-32C (LAMP), 12-15A (Pine Unit), 
and 14-14A (Pine Unit) in the Stony Mountain formation.  Oil recovery by spontaneous 
imbibition versus imbibition time for Stony Mountain cores is plotted in Figures 34 and 35.   
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Figure 34. Imbibition results for Stony Mountain cores when Swi = 0. 

 
Figure 35. Imbibition results for Stony Mountain cores when Swi > 0. 

Oil recovery by spontaneous imbibition in Stony Mountain water was less than 15%.  
When Swi = 0 (Figure 34), oil recovery was improved up to 2% by the CD-128 solution, and less 



  43 

than 1% by the RA-246L solution.  When 0>wiS , 2–6% more oil was produced with the CD-
128 solution, and 3–5% more oil with the RA-246L solution (Figure 35).  Note that that thermal 
expansion may have been responsible for part of the oil recovered at the beginning of the 
imbibition process when the cores were in brine solution.   

Since the permeability of the Stony Mountain cores was very low (gas permeability of 
most cores was less than 1 md), it was understandably difficult for the surfactant to penetrate far 
enough to have much effect on oil recovery during the laboratory time scale.  Nevertheless, the 
two anionic surfactants improved oil recovery by imbibition. 
 
Red River Cores 

The non-cleaned Red River core plugs came from the Coral Creek well 23X-10 whole 
core (Red River U4 zone) as did the cleaned cores, which were cleaned three times with CO2-
toluene.  Imbibition tests were conducted on both clean and non-cleaned cores.  For the three 
non-cleaned cores with initial water saturation Swi = 0, oil recoveries by spontaneous imbibition 
were 51, 54, and 77%, respectively.  Those recoveries were very high for spontaneous 
imbibition, indicating the strongly water-wet nature of the cores.  Imbibition of the CD128 
solution increased oil recovery by another 4%, but the A246L solution did not improve oil 
recovery (Figure 36).   

 

 
Figure 36. Spontaneous imbibition of Red River cores for Swi = 0. 

For the cleaned cores, initial water saturation ranged from 1–13.2%, and oil recovery by 
brine imbibition ranged from 2–21%.  Imbibition of the CD128 solution improved oil recovery 
by 4–8%, whereas the A246L solution improved oil recovery up to 3% as shown in Figure 37.       
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Figure 37. Spontaneous imbibition of Red River cores for Swi > 0. 

 
Interlake Cores 
 Non-cleaned Interlake core samples were cut from slabbed Interlake core (Pennel Well 
34-10).  The two Interlake cores had much higher permeability than those from Stony Mountain 
and Red River formations.  Imbibition curves for Interlake cores are plotted in Figure 38. 
 

 
Figure 38. Spontaneous imbibition of Interlake cores for Swi = 0. 

 
  Oil recovery from the two cores by Interlake brine imbibition was 11% and 17%, 

respectively.  After the cores soaked in CD128 and A246L solutions, improved oil recovery was 
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12.6% and 8.5%, respectively, indicating that both surfactants were very effective in improving 
oil recovery of the Interlake cores. 

As shown in Figure 39, core permeability can affect oil recovery by spontaneous 
imbibition, both for brine and surfactant solutions.  Usually higher permeability allows the 
aqueous phase to imbibe more efficiently, therefore resulting in higher oil recovery.  BVO in the 
cores also had a similar effect on oil recovery, though not as obvious as that of permeability. 

 

 
Figure 39. Effect of permeability and BVO on imbibition oil recovery. 
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Nuclear Magnetic Resonance Carr–Purcell–Meiboom–Gill Measurements 
From saturation and displacement measurements, porosity and initial water saturation 

varied widely in range, from 7–24% and up to 13.2%, respectively.  The NMR population 
density vs. resonance time T2 curves for all the cores is plotted in Figures 40–43.  The NMR 
scans were taken prior to brine imbibition, after brine imbibition, and after surfactant imbibition.     

 

 
Figure 40.  NMR scanning curves for Stony Mountain cores with Swi = 0. 
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Figure 41. NMR scanning curves for Stony Mountain cores with Swi > 0. 
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Figure 42.  NMR scanning curves before and after imbibition for Red River cores. 
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Figure 43.  NMR scanning curves before and after imbibition for Interlake cores. 

 

As seen from the figures, most of the curves have very distinct peaks for water and oil 
contained in the cores.  The porosities derived from the size of NMR and water saturations 
derived from the CPMG curve peaks and spans are plotted against those measured with the 
volumetric method (Figures 44 and 45).  

 

 
Figure 44. Comparison of porosity between measured and NMR derived. 
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Figure 45. Comparison of water saturation between measured and NMR derived. 

 
 Some of the NMR calculated porosities and water saturations closely match the 

volumetric (or weight) measurements.  The mismatches may have been caused by the 
heterogeneity of the rocks.  

NMR CPMG measurements have been effective in measuring porosity and water 
saturation for homogeneous rocks such as Berea sandstone.14  However, these Cedar Creek 
anticline carbonate cores are not amenable to the NMR method of determining porosity and 
water saturation. 

 
Summary 

The anionic surfactants CD 128 and A246L had a small effect on cores from the Stony 
Mountain formation due to the extremely low permeability (in the range of 0.2–4 md).  For the 
three non-cleaned Red River cores, oil recoveries by spontaneous imbibition in formation water 
were 51, 54, and 77%, respectively.  Those recoveries were very high for spontaneous 
imbibition, indicating the strongly water-wet nature of the cores.  Imbibition of the CD128 
solution increased oil recovery by another 4%, but the A246L solution did not improve oil 
recovery.  For cleaned Red River cores, initial water saturation Swi ranged from 1–13.2%, while 
oil recovery by brine imbibition ranged from 2–21%.  Imbibition of the CD128 solution 
improved oil recovery by 4–8%.  The two Interlake cores had much higher permeabilities than 
those from the Stony Mountain and Red River formations.  Oil recovery by imbibition of 
formation brine was 11% and 17%, respectively.  After the cores imbibed CD128 and A246L 
solutions, oil recovery was improved by 12.6% and 8.5%, respectively. 

The brine pH and ionic strength had a minor effect on IFTs between oil and brine from 
the Cedar Creek Anticline.  NMR measurements were not accurate for porosity and initial water 
saturation measurements. 
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 The laboratory work supports field tests of the surfactant soak process in the San Andres 
dolomite formation in fields near the Fuhrman Masho.  While not as dramatic as the San Andres 
results, the Stony Mountain and Interlake dolomites also responded to the improved imbibition 
oil recovery with surfactants.  The Red River water-wet results were not expected since this 
formation is widely believed to be oil-wet.  A discussion with the operator supports the water-
wet nature of the cores from that well.  The oil production and oil cut from the well are 
abnormally high, and special core analyses with cores from the well also suggest that the Red 
River dolomite is water-wet.  Production from other Red River wells on the Cedar Creek 
anticline does not support a water-wet reservoir.  The NMR measurements performed in 
conjunction with the Cedar Creek imbibition study were not confirmed by the physical 
laboratory measurements.  The NMR technique could not be used as a substitute for the physical 
measurements of porosity and water saturation obtained from the dolomite cores. 
 The shallow San Andres formation on the northwestern edge of the Permian Basin 
proved to be too tight/oil-wet to facilitate spontaneous imbibition of water and resulting oil 
production.  Core material from the Arbuckel formation in Kansas was received during the last 
month of the project; hence, this material was not included in the laboratory program. 
 The laboratory work demonstrated that alkyl ether sulfate, CD128, was stable at 200oF.  
This chemical had been reported by others to suffer thermal degradation.  Ionic strength and pH 
had only a minor affect on surfactant-oil IFTs measured in the Cedar Creek fluids. 
 The laboratory work convincingly demonstrates that chemical EOR screening needs to be 
conducted with real reservoir rock-fluid systems.   
 
 

Part B Engineering 
 
Overview 

During the course of the 2-year project, the Cottonwood Creek Phosphoria surfactant 
soak treatments were revisited.  The update included extended production history and the 
development of a neural network that included the oil-producing rate prior to the surfactant 
treatment.  The inclusion of the prior oil rate as an input variable resulted from an evaluation of 
water-frac completions in a tight San Andres dolomite reservoir (Fullerton San Andres Unit).  
The evaluation demonstrated that a strong relationship existed between the prior oil rate and 
water-frac results.  A 3-3-1 neural network was developed to correlate water-frac production 
response with the average and skew of the gamma ray log through the pay section plus the prior 
oil rate.   

The Fullerton neural network was used to generate baseline water-frac predictions for use 
in evaluating the effectiveness of incorporating surfactant into water-fracs.  The predicted 
response was quite impressive.  Unfortunately, the operator of the Fullerton San Andres elected 
not to prove/disprove the predictions with field tests due to very high service company costs to 
mix surfactant into the frac water.   

Although Cottonwood Creek is located in the Big Horn Basin of Wyoming, production is 
from a dolomite, and the dataset was used to predict surfactant response from three San Andres 
reservoirs in the Permian Basin. 

The Cottonwood Creek dataset was used to predict surfactant soak performance in three 
wells in the West Fuhrman Masho Unit (WFMU).  A 15 well dataset from the Cottonwood 
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Creek field tests was used to correlate the prior oil rate, the average of the neutron porosity log, 
and the pounds of surfactant per foot of pay with the oil rate following the treatment.  The West 
Fuhrman Masho Unit, the Fullerton San Andres Unit, and the Cottonwood Creek Phosphoria 
Unit all produce from dolomite zones in limestone reefs.   The WFMU operator conducted three 
field tests of the process to confirm the predictions.  The field tests were precisely conducted 
with mechanical clean out of the wells, installation of new downhole pumps, and daily well tests 
for 1 month prior to pumping the surfactant treatments.  The tests were conducted during 
October 2006.   Daily well tests were conducted following the treatment.  One of the treatments 
generated additional oil.   

The Eagle Creek San Andres field is located on the northwest shelf of the Permian Basin.  
The Cottonwood Creek neural network suggested that wells in this very tight dolomite reservoir 
were excellent candidates for surfactant soak stimulation.  Unfortunately, the laboratory results 
did not support the numerical predictions; thus, field tests were not conducted. 

The boundaries of the public domain neural network used to evaluate the Cottonwood 
Creek dataset are constrained to the magnitude of the production response and the amount of 
surfactant used in the 23-well dataset.  Commercial neural networks included in software 
packages such as Matlab can extrapolate beyond the limits of dataset domain. The neural 
network architecture developed with the public domain neural network was used to train an 
identical Matlab neural work.  The training curve results are practically indistinguishable.    

An analysis of the NMR scans collected during the high temperature imbibition tests 
conducted on core-fluid systems from Cedar Creek Anticline dolomite reservoirs was not 
beneficial.  Scatter in the measurements prevented meaningful correlations using the 
conventional CPMG technique.  Fuzzy curves and neural networks were investigated as pattern 
recognition tools to correlate the NMR scans with porosity and changes in water saturation 
during imbibition.   The AI method generated improved correlations between NMR patterns and 
porosity.  However, neither the AI nor the conventional methods of analysis generated 
meaningful correlations between the physical changes in saturation and changes in the scan 
patterns. 

 
Cottonwood Creek Revisit 

The production response of the 23 wells subjected to imbibition stimulation in the 
Phosphoria zone of the Cottonwood Creek field was revisited and updated.9 Continental 
Resources, the field operator, provided the response through November 2005.  The 23-well 
composite performance is shown in Figure 46.  The noise in the production trend following the 
production of 110,000 bbl of oil is due to operational changes related to gas production.  It is 
evident that these initial experimental treatments generated 15,000 bbl of incremental oil.  The 
average incremental recovery was 680 bbl/well for a sum of 15,000 bbl. The total cost to treat 
the first 22 wells was $167,443 including acid and pulling unit cost. The cost of the surfactant 
treatment alone averaged $2512 per well (3063 lb/well).  The recovery can be expressed as 4.5 lb 
of surfactant per barrel of incremental oil.  The treatments were done during last half of 2002 and 
early 2003 when the cost of surfactant was about $0.80/lb.  Today the surfactant cost is over 
$1.00/lb. 
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Figure 46.  23-well composite performance through November 2005. 

  
The recovery-cost calculations are based on the average well performance.  The response 

of well 218, shown in Figure 47, was superior to all others.  The pink bar denotes the application 
date. 
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Figure 47.  Cottonwood Creek well 218 performance through November 2005. 

  
Well 218 produced 4500 bbl of estimated ultimate incremental recovery (EUIR).  The 

goal of applying AI to the revisited and updated Cottonwood Creek dataset was to improve the 
average recovery from future well treatments. 

An analysis of the Fullerton San Andres water-frac stimulations revealed that a strong 
correlation existed between the oil producing rates before and after treatment.  The Fullerton 
analysis is presented later in this report. The correlation demonstrated that good wells are better 
water-frac candidates than poor wells.  The same conclusion can be drawn from the Cottonwood 
Creek surfactant soak dataset as shown with the fuzzy curve in Figure 48. 
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Cottonwood Creek 17 Well Dataset
Oil Rate Before and After Surfactant Soak
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Figure 48.  Cottonwood Creek fuzzy curve:  before and after oil rates. 

 The benefit of a strong correlation between the before and after oil rates was incorporated 
into a 3-2-1 neural network using the before oil rate, the average of the neutron porosity, and the 
amount of surfactant as shown in Figure 49.  The trained neural network was used to design 
surfactant soak treatments for San Andres fields. 
 

Average of Neutron Porosity, Before Oil (bbl/day), and 
Surfactant (lbs/ft) Used to Predict After Oil (bbl/day);

Arc=3-2-1; Trained to 97%
R2 = 0.9566
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Figure 49.  Results of the Cottonwood Creek neural network training.  
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San Andres Dolomite Reservoirs 
 
West Fuhrman Masho Unit 
 The West Fuhrman Masho Unit is located near Andrews, Texas.  Oil is produced from 
the same dolomite zone from which cores were cut for the laboratory imbibition tests described 
earlier.  The information necessary to design surfactant soak treatments in the WFMU operated 
by Range Resources was provided and used to generate ~20 lb/ft of pay and ~75 lb/ft surfactant 
treatments for four wells.  The wells are in an area of the field that has not met production 
forecasts.  The trained neural network shown in Figure 49 was used with the average of the 
neutron porosity and the prior oil rate from WFMU wells 95, 152, 242, and 243 to predict the oil 
rate following treatment of the wells with 3000 lb of T91-8 surfactant.  The quantity of surfactant 
was held constant and then increased to 9000 lb for a second set of predictions.  The results are 
tabulated in Table 16.  
 

Table 16. Neural network predicted response 

 
BOPD prior to 

treatment 
BOPD after to treatment with 3000 

lb 
BOPD after to treatment with 

9000 lb 
WFMU95 17 22 22 
WFMU152 8 12 22 
WFMU242 8 16 13 
WFMU243 10 21 22 
 
 Range Resources elected to test the laboratory results and the neural network predictions 
with three test wells in the WFMU highlighted in Table 16.  Mechanical problems prevented a 
test in a fourth well.  The Tomadol 91-8 surfactant soak field test procedure was as follows: 
 

1. One month prior to treatment, pumps were pulled, and wells were mechanically cleaned 
to remove paraffin and scale.  A new pump was installed, and the oil and water 
production rates were measured daily along with the pumping fluid level.   

 
2. After the establishment of a 30-day baseline, surfactant was mixed in 1000 bbl fresh 

water (well 243) or 1000 bbl produced water (wells 152 and 242).  The surfactant 
treatment for well 243 consisted of 3000 lb or 21 lb/ft of pay, 9000 lb or 75 lb/ft for well 
152, and 3000 lb or 16 lb/ft for well 242.  The treatments were followed by a 
displacement volume of 80-100 bbl.  Both treatment and over-flush pumped into the 
wells at ~5 bbl/min at 130 psi pump pressure.   Wells were shut-in for a 7-day soak 
period. 

 
 Well 152 averaged 5.0 BOPD prior to treatment and 7.8 BOPD for the first 27 producing 
days following the soak period.  Well 152 produced a "chocolate milk" type emulsion that was 
difficult to break, but did clean up.  Well 242 averaged 6.0 BOPD prior to treatment and 6.2 
BOPD for the first 11 producing days following the soak period.  Well 243 averaged 6.4 BOPD 
prior to treatment and 6.3 BOPD for the first 42 producing days following the soak period.  Well 
152 cost $29,383; Well 242 cost $18,783; and Well 243 cost $21,686. 
 The initial field test results are presented in a graphical format in Figures 50–52. The 
response period is too short to evaluate the effectiveness of the treatments.  The initial oil rate 
response predicted by the neural network trained with Cottonwood Creek data is shown in Table 
16 above.  Mechanical problems prevented the well 95 treatment. 
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 Well 152 was treated with 75 lb/ft of pay (9000 lb) and predicted to produce at a 22 
BOPD rate. 
 

 
Figure 50.  Well 152 initial response. 

 
 Well 242 was treated with 25 lb/ft (3000 lb) and predicted to produce at a 16 BOPD rate. 
 

 
Figure 51.  Well 242 initial response. 

 Well 243 was treated with 25 lb/ft (3000 lb) and predicted to produce at a 21 BOPD rate. 
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Figure 52.  Well 243 initial response. 

 To date, well 152 has generated a positive response.  All wells have demonstrated an 
increase in total fluid produced.  The three wells produce from the equivalent of the B, C, and D 
zones in the Boner #40 well in the Fuhrman Masho field.  Cores from the Boner #40 were used 
in laboratory tests where surfactant worked very well in the C zone, but not very well in the B 
zone.  
 
Eagle Creek San Andres Field 
 The Eagle Creek San Andres field is located on the northwest edge of the Permian Basin 
near Artesia, New Mexico.  The 7% porosity San Andres formation is found at 1300 ft.  After an 
unsuccessful 1980s era waterflood, the 200+ wells in the field produced an average of less than 
one-half barrel of oil per day.   The marginally economic tight oil reservoir now produces at 
extremely low bottom-hole pressures under primary conditions.  Water salinity varies 
considerably throughout the field as a result of limited fresh water injection.  The variation is 
shown in Figure 53.  The variation resulted in the decision to test surfactant effectiveness in 
multiple salinity waters.   
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Figure 53. Variation in water hardness. 

 
  Optimum surfactant treatments were developed for Yates Petroleum following a 
presentation of the Fuhrman Masho San Andres laboratory results with information from prior 
field tests in the Cottonwood Creek Phosphoria field.  The J-Lazy-J lease predictions were 
developed concurrently with the laboratory imbibition testing program. 
 Data from the Cottonwood Creek field were used to train a neural network to predict the 
performance of surfactant treatments in the Eagle Creek San Andres field.  The training dataset 
was the result of surfactant treatments applied to 21 Cottonwood Creek Phosphoria wells.  The 
gamma ray log and the quantity of surfactant expressed as lb/ft of pay were used to train the 
neural network to predict the percentage change in production after the surfactant.  
 Combinations of different statistical parameters of the gamma ray log pattern and bbl/ft 
of surfactant were used to train the neural network.  The standard deviation of gamma ray and 
the lb/ft of surfactant generated the best training result.  Figure 54 shows the neural net training 
result using the standard deviation of the gamma ray and lb/ft of surfactant as inputs. 
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Figure 54. Neural network training result. 

  The neural network trained to 98%.  Care was taken to avoid overtraining.  The small 
dataset necessitated a simple training architecture.  The trained neural network was used to 
predict the optimum surfactant treatment for the J-Lazy-J lease wells. 
 Eighteen wells are on the J-Lazy-J lease.  Only 12 wells have the well logs required to 
make predictions.  The optimum neural network predictions follow in Table 17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 17. Optimum surfactant treatments 

Well 
 

Avg. production 
(before treatment), bbl/mo 

Predictions 
(% change) 

Production 
(increase/decrease) 

Surfactant required 
(lb) 

2 6.33 1492 94 1680 
3 6.33 113 7 4170 
4 15 78 12 1665 
6 10 590 59 1680 
7 3 1437 43 2790 
8 6.3 91 6 2025 
11 3 1508 45 950 
12 3 1508 45 760 
13 18.3 1249 228 1860 
14 10 1508 151 1100 
15 10 231 23 3840 
17 8 1508 121 1580 

Neural net training result (Arch 2-3-1)
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These results were generated concurrently with the ongoing laboratory work.  The completed 
laboratory work did not support the use of surfactant soak technology.  The reservoir is either too 
oil-wet or too tight to imbibe either water or surfactant. 
 
Fullerton San Andres Field 
 The Fullerton San Andres field is located in west Texas near the town of Andrews in the 
heart of the Permian Basin similar to the Fuhrman Masho field.  The Fullerton operator, Texland 
Petroleum, has demonstrated that inexpensive water-fracs with very low sand concentrations are 
an economic method of stimulating the tight, low volume wells.  The operator expressed an 
interest in incorporating the surfactant soak process in the water-frac design.   
 The operator’s intention of including surfactant in the water-frac design dictates the 
development of a method of measuring the incremental oil response to surfactant.  To date, about 
80 wells have been water-fraced in this tight oil reservoir.  Additional wells await stimulation; 
and the intention is to include nonionic surfactant in the stimulation fluid.  The anticipated oil 
response to water-fracs only in the remaining wells is required to evaluate the effect of 
surfactants on enhanced oil recovery.  Correlations based on the results of previous water-fracs 
were developed to predict the incremental oil from the stimulation treatments. 
 Since the correlating dataset shown in Table 9 is incomplete and sparse, AI tools, fuzzy 
logic, and neural networks were used to analyze the data.  Fuzzy logic was used to find variables 
that bore a relationship to the incremental oil.  Surprisingly, only the petrophysical log patterns 
correlated with the water-frac results.  To date, prior production and pressure history have 
provided little insight to stimulation results.  The petrophysical logs were digitized and the 
patterns described with statistical parameters.  The dataset shown in Table 18 contains both 
open-hole and cased-hole logs with only the gamma ray common to both suites.  The oil rate 
prior to the water-frac was available for all wells and provided the best correlation of the 
variables that were evaluated.  The incremental oil response was based on the oil rate before and 
after the water-fracs.   
 

Table 18.  Available water-frac data summary 
Variable Number of records 

Number of wells 84 
API no. 19 
Top of zone 84 
Bottom of zone 84 
Gamma ray logs 18 
Sonic logs 14 
Neutron logs 4 
Resistivity logs 3 
Frac size, lb/ft sand 69 
Frac volume, gal/ft water 69 
BHP prior to water frac 24 
Incremental rate response 81 
 
 Initially, the well responses with open-hole logs were analyzed.  Fifteen gamma ray and 
sonic logs from the Fullerton San Andres field were digitized.  Fuzzy logic was applied to water-
frac results to determine suitable parameters for correlations with production response.  The 
production rate was the fuzzified variable that was crossplotted with the statistical parameter 
used to describe the log patterns.  The parameters are prioritized in Table 19. 
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Table 19. Fuzzy ranking of well log statistical parameters with water-frac production response, BOPD 
Statistical parameter Range R2 Goodness 
DT- Kurt 0.30 0.96 1.26 
GR- Skew 0.30 0.95 1.24 
DT- VAR 0.30 0.92 1.22 
DT- St Dev 0.20 0.92 1.12 
GR- VAR 0.25 0.86 1.11 
GR- Kurt 0.28 0.78 1.06 
GR- St Dev 0.23 0.81 1.04 
DT- Skew 0.24 0.43 0.67 
GR- max 0.23 0.40 0.63 
GR- Q3 0.22 0.19 0.42 
GR- min 0.26 0.10 0.36 
GR- median 0.27 0.08 0.35 
GR- Trim (20%) 0.26 0.06 0.33 
GR- Q1 0.30 0.00 0.30 
GR- Ave 0.26 0.01 0.27 
DT- max 0.12 0.14 0.26 
DT- Q1 0.05 0.09 0.14 
DT- Trim (20%) 0.05 0.07 0.12 
DT- min 0.03 0.09 0.12 
DT- median 0.06 0.06 0.12 
  
 The “Goodness” value in Table 19 was used to rank the log pattern statistical parameters.  
Kurtosis is the parameter that describes size of a distribution tail; skewness describes asymmetry 
in a random variable probability distribution, and variance measures the data spread of the 
gamma ray and sonic logs.  These three parameters suggest that the log patterns are promising 
correlating variables.  
 The kurtosis and skew of the gamma ray water-frac log patterns were used as inputs to a 
2-2-1 neural network that trained to 86% as shown in Figure 55.  Additional training results are 
shown in Table 20.  The comments about lines under “Note” column in Table 20 indicate that 
despite a satisfactory training value (R2), predictions from the neural network are suspect due to 
assumed local minima problems.  

Kurtosis and Skew of Gamma Ray
Used to Predict BOPD
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Figure 55. Water-frac neural network training results. 
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Table 20. Neural network open hole log training results 
Input #1 Input #2 R Note 
GRk GRsd 0.37   
GRk GRsk 0.86 OK 
GRk GRv 0.55   
GRsd GRv 0.75 OK 
GRsk GRsd 0.67 Line 
GRsk GRv 0.01   
DTk DTsd 0.82 OK 
DTk DTv 0.77 OK 
DTsd DTv 0.71 Line 
GRk DTk 0.83 Line 
GRk DTv 0.83 Line 
GRsd DTk 0.81 OK 
GRsd DTv 0.43   
GRsd DTk 0.83 Line 
GRsd DTsd 0.78 Bottom Heavy 
GRsd DTv 0.84 Bottom Heavy 
GRsk DTk 0.71 Line 
GRsk DTsd 0.74 Line 
GRsk DTv 0.74 Line 
GRsk DTk 0.84 2 Lines 
GRv DTsd 0.86 2 Lines 
GRv DTv 0.84 2 Lines 
 
 The open-hole log dataset was small.  Our experience with AI suggests that small 
datasets result in easily trained neural networks, which generate poor predictions.  Larger 
datasets are more difficult to train, but confidence is greater in the predictions.  Hence, an 
additional 45 through-pipe, gamma ray-neutron perforating logs and corresponding water-frac 
production responses were obtained for analysis.  While the perforating logs are not appropriate 
for reserve calculations, the patterns of the cased-hole logs are believed to be suitable for AI 
analysis. 
 Initial work focused on the gamma ray log.  The 45 logs were digitized, and the 
information reviewed for AI application.  Thirty-four well logs with associated data were useful.  
The statistical parameters of the 34 well logs were calculated.  The fuzzy rankings determined 
for the open-hole logs were used to select the inputs for the construction of the cased-hole neural 
networks.  Again, the after water-frac production was the fuzzified variable.  The statistical 
parameters used for neural network construction were as follows: Average, Kurtosis, Median, 
Minimum, Trim Mean, and Variance.  The training results are shown in Table 21.  All network 
architectures result in tie lines less than half the number of samples. 
 

Table 21. Cased-hole gamma ray log training 
Architecture Tie-lines Inputs Training CC, % R2, % 
2-2-3-1 13 Kurt-Average 84 70.4 
2-4-1 12 Kurt-Median 87 75.5 
2-5-1 15 Kurt-Median 91 82.5 
2-3-1 9 Kurt-Minimum 83 69.3 
2-4-1 12 Kurt-Minimum 83 68.3 
2-5-1 15 Kurt-Trim Mean 91 82.7 
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 The value of R2 is an indicator of the distribution of data along the 100%-45o actual 
versus predicted line.  The greater the value of R2, the better the forecasting ability of the trained 
neural networks.  The cased-hole results are generally superior to the open-hole results shown in 
Table 20.  The cased-hole dataset was extended to 37 wells as additional data became available. 
Analysis of the larger dataset was extended to include the neutron log patterns as correlating 
variables.  The training results of 576 different neural network architectures with correlation 
coefficients of 70% or more are shown in Table 22.  Seventeen of the tested architectures were 
found to have training correlation coefficients greater than 69%.   
 

Table 22.  GR-neutron log attributes used to predict water-frac response 
Neural Network Training Results 

Architecture 
2 2 1 2 3 1 2 4 1 2 5 1 2 2 2 1 2 2 3 1 2 3 2 1 2 2 2 2 1 

Attributes 

Correlation coefficient, % 
Avg GR Avg ФN   81      
Avg GR STD ФN       86  
Avg D GR Avg D ФN    83     
Avg D GR Med  ФN    79     
Avg D GR Var  ФN   85 80     
D2 GR D2 ФN    79  78   
D2 GR Kurt  ФN   73      
Kurt  GR Med  ФN  72       
Kurt  GR Max ФN   76      
Kurt  GR TrimM ФN       71  
Min GR Min ФN    80     
Min GR Quart 1 ФN    89     
Min GR TrimM ФN    75     
Quart 1 GR Quart 1 ФN    83     
Quart 1 GR Max ФN  77       
Med  GR TrimM ФN       86  
Quart 3 GR Var  ФN  80       
Max GR Avg ФN    86     
Max GR STD ФN    70     
Skew GR D2 ФN    76     
Skew GR Quart 3 ФN    85  77   
Skew GR Max ФN      71   
Skew GR STD ФN    90     
Skew GR Var  ФN    74     
STD GR Min ФN    77     
STD GR Avg D ФN       77  
STD GR STD ФN    73     
STD GR Var  ФN    90     
TrimM GR Quart 1 ФN    79     
Var GR Avg D ФN  75  82     
Var GR D2 ФN       81  
Var GR STD ФN   92      
Var GR Var  ФN    93     
  
 It is evident that a 2-5-1 architecture with an assortment of statistical parameters as inputs 
generates satisfactory training results.  The extended cased-hole water-frac dataset was analyzed 
with respect only to the gamma ray logs; the results are shown in Table 23. 
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Table 23. GR log attributes used to predict water-frac response 
Neural Network Training Results 

Attribute 2 2 1 2 3 1 2 4 1 2 5 1 2 2 2 1 2 2 3 1 2 3 2 1 
Avg D GR Skew GR    77    
Avg GR Kurt GR   84 92    
Avg GR Skew GR   73     
Kurt GR Min GR  83 83     
Kurt GR Med GR   87 91    
Kurt GR Quart 3 GR    91    
Kurt GR TrimM GR    91    
Kurt GR Var GR    91    
Min GR Skew GR   82 80    
Skew GR STD GR   71 72    
Skew GR TrimM GR    90    
Skew GR Var GR    76    
 
 The gamma ray open-hole logs were combined with the cased-hole gamma ray logs to 
generate a 50 water-frac well dataset.  Only the gamma ray log was available in both the open-
hole and cased-hole datasets.  The open-hole logs occasionally included a sonic log, while the 
cased-hole logs included the neutron log. 
 Examination of Table 24 suggests that reasonable predictions can be made using only 
gamma ray log attributes in the combined dataset. Seven (2%) of 385 networks trained to a 
correlation coefficient of 70% or more without suspected local minima problems.  Even though 
overtraining was not a problem with the 50 well dataset, the robustness of the neural network 
training shown in Table 24 could be inferior to the separate open-hole and cased-hole datasets 
because of numerous suspected local minima problems.  Neural networks using the cased-hole 
gamma ray-only dataset generated training correlation coefficients greater than 70%, 18% of the 
time.  Three percent of the neural networks using the cased-hole gamma ray-plus neutron log 
dataset trained to greater than a 70% correlation coefficient.  The open-hole dataset had gamma 
ray and occasional sonic logs available as inputs, and the cased-hole dataset had gamma ray and 
neutron logs available.  While the combined dataset had more wells in the training data, the 
neural networks were of poorer quality, indicating the value of multiple log patterns as inputs.   
 

Table 24. Gamma ray log attributes used to predict water-frac response 
Combined Dataset Neural Network Training Results 

Architecture 
2-2-1 2-3-1 2-4-1 2-5-1 2-6-1 2-7-1 2-8-1 

Attributes 

Correlation Coefficient, % 
Avg GR Kurt  GR 37 37 37 37 37 37 0 
Avg GR Min GR 19 18 18 18 18 18 18 
Avg GR Quart 1 GR 32 9 5 4 9 2 9 
Avg GR Med  GR 11 11 4 11 3 3 4 
Avg GR Quart 3 GR 24 24 1 24 24 2 24 
Avg GR Max GR 36 36 36 36 36 36 36 
Avg GR STD GR 36 28 27 29 26 15 16 
Avg GR Skew GR 29 35 36 36 36 36 36 
Avg GR TrimM GR 36 17 3 6 4 1 0 
Avg GR Var GR 27 26 25 15 26 13 11 
TrimM GR Var GR 27 26 26 24 6 15 13 
Kurt  GR Min GR 71 39 75 39 39 39 39 
Kurt  GR Quart 1 GR 37 38 38 38 38 38 0 
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Kurt  GR Med  GR 38 38 38 38 37 38 0 
Kurt  GR Quart 3 GR 37 37 37 38 37 37 37 
Kurt  GR Max GR 63 64 64 75 35 35 0 
Kurt  GR STD GR 67 67 73 82 85 35 73 
Kurt  GR Skew GR 42 48 35 35 48 34 34 
Kurt  GR TrimM GR 38 38 38 37 38 37 37 
Kurt  GR Var GR 63 71 74 74 76 78 73 
STD GR TrimM GR 28 28 28 29 27 28 26 
STD GR Var GR 23 24 23 24 12 24 25 
Min GR Quart 1 GR 19 19 18 18 18 18 0 
Min GR Med  GR 19 19 18 19 20 19 20 
Min GR Quart 3 GR 21 21 20 20 20 6 20 
Min GR Max GR 34 34 33 34 34 26 33 
Min GR STD GR 29 29 16 18 25 16 16 
Min GR Skew GR 60 36 36 36 36 36 36 
Min GR TrimM GR 20 19 20 20 20 19 19 
Min GR Var GR 28 26 19 15 23 16 16 
Skew GR STD GR 51 64 35 34 33 80 33 
Skew GR TrimM GR 36 36 36 36 36 36 36 
Skew GR Var GR 56 55 69 66 34 33 0 
Quart 1 GR Med  GR 30 63 64 18 49 3 2 
Quart 1 GR Quart 3 GR 48 40 18 2 18 1 18 
Quart 1 GR Max GR 35 35 35 35 35 35 35 
Quart 1 GR STD GR 28 29 11 28 25 12 11 
Quart 1 GR Skew GR 36 36 36 36 36 36 36 
Quart 1 GR TrimM GR 50 58 3 3 17 2 1 
Quart 1 GR Var GR 27 28 25 28 25 16 0 
Max GR STD GR 56 31 41 32 32 34 84 
Max GR Skew GR 33 33 33 33 33 33 33 
Max GR TrimM GR 36 36 36 35 35 36 31 
Max GR Var GR 47 35 71 32 32 35 0 
Med  GR Quart 3 GR 15 1 0 72 1 1 1 
Med  GR Max GR 36 36 35 36 36 36 36 
Med  GR STD GR 28 28 28 25 26 25 21 
Med  GR Skew GR 36 36 36 36 36 36 36 
Med  GR TrimM GR 5 4 3 2 5 2 2 
Med  GR Var GR 26 28 19 27 14 17 27 
Quart 3 GR Max GR 36 36 36 36 36 36 30 
Quart 3 GR STD GR 28 29 27 25 22 83 26 
Quart 3 GR Skew GR 36 36 36 36 36 36 36 
Quart 3 GR TrimM GR 1 18 0 9 1 0 1 
Quart 3 GR Var GR 25 27 10 28 19 12 21 
 
 Neural network architectures were developed to predict water-frac incremental oil rates 
given either open- or cased-hole logs.  These correlations will form the base line production in 
the evaluation of water-frac stimulations that incorporate surfactant in the frac fluid. 
 The water-frac incremental oil resulting from 69 of the well stimulations was evaluated in 
terms of frac size and incremental oil.  Fuzzy curves were generated with volume in terms of 
gal/ft of pay and amount of sand in terms of lb/ft of pay.  The normalized fuzzy curves are shown 
in Figures 56 and 57. 
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Fuzzy Curve of Water Volume (gal/ft)
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Figure 56. Volume fuzzy curve. 

 

Fuzzy Curve of Frac Size  (sand lb/ft) 
69 wells
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Figure 57. Quantity of sand fuzzy curve. 

 The normalized value of 0.9 equates to 1950 gal/ft for the volume of water and 350 lb/ft 
for the quantity of sand.  
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 During the course of examining the Fullerton San Andres water-frac dataset, we observed 
that the oil rate prior to stimulation correlated well with the oil rate following the treatment as 
shown in a fuzzy curve (Figure 58). 
 

Fullerton San Andres
BOPD Before Water Frac vs BOPD After Water Frac

Range=0.57, Goodness=1.33 R2 = 0.7647
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Figure 58. Fullerton San Andres before/after oil rate fuzzy curve. 

 
 The fuzzy relationship between the two oil rates is strong.  Notice that the better the well, 
the better the response.  However, the inverse applies to the incremental oil rate response.  
Normalizing the rates by feet of pay generates similar fuzzy curves.  
 Predictions made with the neural network used to generate Figure 49 are limited by the 
oil production rate limit of the dataset, about 25 BOPD.  Since the predicted water-frac Fullerton 
San Andres wells exceeds 25 BOPD, commercial neural network software from Matlab was used 
to predict response to surfactant treatments with prior oil rates greater than 25 BOPD using the 
same input variables.  The Matlab NN software was trained with the Cottonwood Creek dataset 
that includes the 25 BOPD limit, and the results generated with a 3-3-1 architecture are shown in 
Figure 59. 
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Figure 59.  Matlab 3-3-1 NN training results with Cottonwood Creek dataset. 

 
 The cross plots shown in Figures 49 and 59 are quite similar.  The Matlab NN software is 
not limited by the domain of the dataset, and the trained NN was used to generate the production 
forecasts shown in Table 25. 
 

Table 25. Fullerton Field forecasted surfactant stimulation results 
Well Oil Rate Prior to Treatment 

bbl/day 
Forecast Oil Rate 

bbl/day 
Logsdon B 11 11 40 
Logsdon C 51 12 29 
Logsdon D 30 17 111 
Logsdon E 19 13 57 
Scarb. C 7 12 181 
Scarb. C 8 6 192 
SSAU 1128 5 10 
SSAU 2024 3 12 
SSAU 2045 11 121 
 
 The use of Matlab was driven by a recent report from an operator using neural network 
correlations to select drilling locations in the Red River formation in North Dakota.  Luff 
Exploration Co. designed a Matlab neural network as part of an Intelligent Computing System to 
analyze a dataset, and generated excellent results.15 Hence, Correlations Company was interested 
in comparing a Matlab neural network with the public domain network, SNNS NN16 that we use.  
The Matlab software was evaluated using a dataset developed during this project. 
 
Matlab Neural Network Toolbox 
 
 The Matlab NN toolbox consists of 15 different types of neural network algorithms.  The 
Feed Forward Back-propagation was evaluated.  All training parameters are user adjustable, 
making the training of networks totally user defined.  The user can set parameters that stop 
training after a set number of cycles, at any given level of error, or when the cross validating 
error goes beyond a specified number.  The GUI is fairly straightforward and very user friendly. 
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Layer terminologies are slightly different than the SNNS NN software.  The Matlab NN includes 
the output layer in the network architecture design terminology.  Various learning and training 
methods are available, each with its advantages and disadvantages.  The transfer function for 
each layer can be individually selected for better results or faster training.  The logarithmic 
sigmoid transfer function seems to generate the most robust networks.  The tangent sigmoid 
function results in faster training.  The transfer function for the output layer is usually a linear 
sigmoid function.  The NN training results are consistently reproducible in Matlab as compared 
to the SNNS NN software.  The Matlab NN software can generate extrapolated predictions as 
opposed to the SNNS NN that is confined to the domain of the dataset. 
 The training results of the Matlab NN toolbox are similar to the SNNS NN for a given 
neural network architecture.  For example, a 50-well dataset from the Fullerton-San Andres was 
used to train both networks.  The optimum network, using the SNNS NN, was 2-5-1 and trained 
to 82%.  The cross plot is shown in Figure 60. Using the same architecture, the Matlab NN was 
trained. The Matlab training cross plot in Figure 61 shows that the network results in roughly the 
same correlations.   
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Figure 60. SNNS training result, 2-5-1 architecture. 
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Figure 61. Matlab NN toolbox training result, 2-5-1 architecture. 

 The Matlab NN toolbox trained better than the SNNS NN when a 2-8-1 architecture was 
used as shown in Figures 62 and 63. 
 

 
Figure 62. SNNS training result, 2-8-1 architecture. 
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Figure 63.  Matlab NN toolbox training result, 2-8-1 architecture. 

 
Matlab in itself, a powerful mathematical tool, can be used in a variety of applications.  It can 
perform most all functions available in Excel.  However, Matlab cannot be used to work on 
database structures, a feature that is available with Excel. Matlab can be customized to perform 
calculations not originally provided with the software.  
 While training neural networks, the “flat line problem” can occur when the actual versus 
neural network values are cross-plotted.  The flat lines are ostensibly related to local minima in 
the SNNS NN solver.  Matlab technical support people attribute the flat lines to saturation of the 
neurons, and this most generally occurs primarily in the output layer.  The range in the data is 
high, and the neuron fails to learn the pattern.  The software then averages the input values and 
correlates the averaged input vector to the output.  Then all input vectors lie with that range, and 
the trained neural network predicts one value resulting in a flat line.  Unlike overtraining, this 
problem can be easily identified.  The problem occurred when the network was repeatedly 
trained to get better results. 
 Fuzzy ranking is used to prioritize neural network inputs in order to enhance the neural 
network training results.  The Matlab fuzzy logic toolbox was investigated as another tool to 
select inputs given a dataset with many possible variables that can affect the output.  The Matlab 
fuzzy logic was found to be similar to the decision tree approach and very similar to the “Fuzzy-
Expert system” designed by the REACT group at the Petroleum Recovery Research Center.    
 The Matlab NN toolbox is user-friendly.  The user can choose the type of neural network 
and set any of the training parameters to obtain the best-trained neural network to solve the 
problem.  Additional reading and training datasets are required to understand the applicability 
and usefulness of the various neural network algorithms. 
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 The fuzzy logic toolbox is a very useful tool for decision-making problems.  When the 
conditions of choice cannot be clearly defined, the toolbox is designed to solve such problems.  
However, it has little obvious value as a means of evaluating the “goodness” of variables thought 
to influence the output of a multi-variable problem. 
 
AI Analysis of Cedar Creek NMR Dataset 
 
 An AI analysis of NMR scans conducted in conjunction with the high-temperature 
(200°F) imbibition tests performed at the ConocoPhillips Technical Center in Bartlesville, 
Oklahoma, was conducted in an effort to improve the correlation between the NMR scans and 
the physical laboratory measurements of water saturation and porosity as determined via the 
CPMG method provided by ConocoPhillips.  The cores were scanned before brine imbibition, 
before surfactant imbibition, and after surfactant imbibition.  The objective was to monitor 
imbibition via the NMR method with the first step being to correlate core porosity with the core 
scans. 
 T2 scans were taken of 19 high-temperature imbibition test cores. Their statistical 
parameters were calculated and normalized with the respective bulk volume of the core sample, 
e.g., the sum of the scan divided by the bulk volume of the core.  The statistical parameters of the 
T2 scans prior to imbibition are shown in Table 26 along with the measured core porosity.  The 
correlation coefficient that describes the goodness of the relationship between the measured core 
porosity and a statistical parameter is shown in the last row of Table 26.  
 

Table 26.  Statistical properties of T2 scans prior to imbibition normalized with core bulk volume 
Core sample Average Sum Maximum Median Skew Kurt Variance Core Porosity, % 
IL 8230.65 41.88 2094 333.2 0.000 0.0932 0.2152 182218 11.69 
IL 8286.35 31.94 1597 219.8 6.151 0.0935 0.1479 84605 7.62 
RR20 69.04 3452 501.8 2.664 0.1305 0.2261 315013 6.79 
RR15 48.10 2405 335.5 16.956 0.1237 0.2301 137734 17.3 
RR13 17.35 867 188.3 0.000 0.1610 0.5701 22972 24.35 
RR14 64.84 3242 562.1 3.079 0.1449 0.3403 336468 23.62 
RRU 8719.75 19.04 952 159.4 0.000 0.0939 0.1648 33666 5.74 
RRU 8715.35 63.98 3199 585.2 10.471 0.1157 0.3138 441871 17.21 
RRU 8713.5 36.78 1839 294.4 8.628 0.1107 0.2337 121228 12.27 
St 8848A 30.96 1517 260.0 0.000 0.1300 0.2522 86389 13.07 
St 8845A 40.13 1966 384.5 11.985 0.1481 0.4125 164893 14.51 
St 8293 26.16 1282 208.5 0.000 0.0975 0.2427 63953 9.43 
St 8831B  18.23 893 101.5 2.550 0.0711 0.0755 21786 7.1 
St 8801A 28.30 1387 194.6 14.891 0.0993 0.2215 55821 8.7 
St 8785 4.18 205 36.9 0.000 0.0911 0.3008 1358 3.0 
St 8800 27.74 1359 248.5 0.000 0.0999 0.2582 82854 11.46 
St 8188B 21.55 1056 145.2 0.990 0.0904 0.1787 31717 9.62 
St 8831A 26.61 1304 154.5 4.125 0.0786 0.1039 40763 10.22 
St 8801B 25.81 1265 75.7 13.188 0.0215 -0.0616 17574 10.26 
Correlation 
Coefficient 18.5% 18.6% 28.8% 2.8% 38.7% 37.3% 18.0%  
 
 NMR software was used to calculate the porosity values plotted versus the measured 
values (Figure 64).  This figure is used as a baseline for the water saturation values calculated 
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from the T2 distributions following brine imbibition and surfactant imbibition.  The two outliers 
(double size symbols) are the core plugs identified as Red River #13 and #20. 
 

 

 
Figure 64.  Calculated using NMR software vs. actual porosity. 

 
 For background purposes, the T2 distributions versus time of the two outliers seen in 
Figure 64 are shown in Figure 65. 
 

 
 

Figure 65.  T2 distribution of the two outliers shown in Figure 64. 
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 To improve the calculated porosity versus measured porosity correlation shown in Figure 
64, we tested numerous neural network architectures with the statistical parameters shown in 
Table 26 as input variables.  A 2-3-1 neural network trained to a 94% correlation coefficient with 
the scan statistical parameters Average and Maximum as inputs and Core Porosity as output 
(Figure 66).  The correlation over-predicts (~11%) at the point where the actual value is about 
7% (Interlake 8230).  The correlation also includes a significant under-prediction at 10% actual 
porosity where the predicted value is about 5% (Stony Mountain 8188B).  The outliers are the 
double-size symbols. 
 

 
Figure 66.  Porosity training results with a 2-3-1 neural network. 

 
 While the neural network predictions are not good, they are considerably better than the 
variation seen in the actual versus calculated porosity values generated with the NMR software 
(Figure 64).  The improvement in the porosity correlation suggested that a similar AI approach 
could be used to generate water saturation correlations.    
 Shown in Table 27 are the statistical parameters generated from the T2 scans prior to 
imbibition, after water imbibition, and after surfactant imbibition.  Included in Table 27 is a 
column entitled Bulk Volume Water, BVW.  BVW was used as the neural network training 
output with the thought that the inclusion of porosity would improve the correlations.  The bold 
values shown in Table 27 are after-water imbibition data.  The first eight samples are those prior 
to imbibition with water saturations greater than 0%.  The last 19 values are the after-surfactant 
imbibition results.  Note the very poor correlation between any of the statistical parameters and 
BVW as shown in the last row of the table. 
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Table 27. Forty-six core samples with Sw >0%.   
All cores normalized with bulk volume 

Core sample Average Sum Maximum Skew Kurt Variance BVW 
        
RR20 69 3452 502 0 0 315013 6 
RR15 48 2405 335 0 0 137734 138 
RR13 17 867 188 0 1 22972 321 
RR14 65 3242 562 0 0 336468 302 
St 8848A 31 1517 260 0 0 86389 73 
St 8845A 40 1966 385 0 0 164893 81 
St 8293 26 1282 209 0 0 63953 43 
St 8831B  18 893 102 0 0 21786 20 
IL 8230.65 39 1896 155 1 0 2672 370 
IL 8286.35 29 1444 250 3 6 3851 151 
RR20 71 3474 710 3 7 30572 118 
RR15 14 687 136 3 6 1060 842 
RR13 63 3084 523 3 6 17377 1988 
RR14 49 2421 365 3 6 7593 1202 
RRU 8719.75 53 2621 481 3 6 14774 354 
RRU 8715.35 70 3445 637 3 6 24974 119 
RRU 8713.5 36 1780 312 3 6 6216 56 
St 8848A 32 1588 266 3 6 4332 90 
St 8845A 37 1803 380 3 8 7965 72 
St 8293 23 1149 203 3 7 2283 71 
St 8831B  16 802 115 2 3 995 49 
St 8801A 23 1126 156 2 5 1487 125 
St 8785 8 380 28 1 -1 110 34 
St 8800 28 1361 179 2 4 1918 142 
St 8188B 25 1247 82 0 -1 704 176 
St 8831A 31 1525 199 2 6 2059 241 
St 8801B 26 1277 160 2 2 1766 261 
IL 8230.65 39 1890 295 2 5 5308 340 
IL 8286.35 30 1447 246 3 6 3713 151 
RR20 69 3370 666 3 6 28865 65 
RR15 16 798 142 3 6 1195 692 
RR13 61 3001 597 3 7 22297 1888 
RR14 49 2379 431 3 7 10898 1202 
RRU 8719.75 48 2368 523 3 7 16967 310 
RRU 8715.35 66 3248 592 3 6 22835 112 
RRU 8713.5 34 1677 305 3 5 6421 51 
St 8848A 33 1611 287 3 6 5088 60 
St 8845A 38 1865 333 3 6 6903 72 
St 8293 27 1309 242 3 8 2938 59 
St 8831B  16 802 115 2 3 995 46 
St 8801A 22 1072 166 2 5 1711 74 
St 8785 6 304 38 2 2 123 25 
St 8800 30 1486 208 2 5 2624 123 
St 8188B 25 1245 122 1 1 1021 136 
St 8831A 28 1348 232 3 7 2834 112 
St 8801B 28 1351 206 2 6 2260 174 
Correlation 
Coefficient 9.3% 9.1% 8.8% 5.5% 5.6% 0.7%  
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 Using a trial and error method, 2-3-1 neural networks were evaluated based on the 
training correlation coefficient.  All combinations of the 46 sets of statistical parameters shown 
in Table 27 were tested.  One network, using sum and maximum as inputs and another using 
maximum and kurtosis, produced the best correlations.  Both trained to 84%, but the distribution 
of the data points along the 45o is poor in both cases (Figures 67 and 68). 
 

 
Figure 67.  All samples with Sw > 0%, maximum and kurtosis as inputs. 
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Figure 68.  All samples Sw >0%, maximum and sum as inputs. 

 
 An attempt was made to generate useful BVW correlations based on the normalized 
dataset available from the NMR software.  These software calculations are based on T2 scans 
normalized with the sum of the respective scan to generate a value for “Norm Ccalc” in the 
parlance of the NMR software.  This normalizing procedure results in constant average value for 
each scan, and the sum always equals 1.0; thus, the statistical parameters skew, kurtosis, and 
maximum were evaluated as neural network inputs for multivariate correlations.  The “Norm 
Ccalc” statistical datasets are shown in Tables 28–30 representing the scans prior to imbibition, 
after water imbibition, and after surfactant imbibition. 
 
 

Table 28. Statistical parameters of 19 core samples, initial t2 scans 
Sample Maximum Skew Kurtosis BVW 
RR13 0.217 2.916 10.325 321.4 
RR14 0.173 2.633 6.183 302.3 
RR15 0.139 2.271 4.224 138.4 
RR20 0.145 2.210 3.831 6.1 
RRU 8719.75 0.167 2.131 3.740 0.0 
RRU 8713.5 0.160 2.482 5.236 0.0 
RRU 8715.35 0.183 2.863 7.763 0.0 
St 8188B 0.137 2.171 4.295 0.0 
St 8801B 0.060 0.500 -1.433 0.0 
St 8801A 0.140 2.482 5.538 0.0 
St 8800 0.183 2.621 6.773 0.0 
St 8785 0.180 2.432 8.035 0.0 
St 8831A 0.119 1.800 2.380 0.0 
St 8293 0.163 2.638 6.566 43.4 
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St 8831B 0.114 1.752 1.860 19.9 
St 8845A 0.196 3.006 8.375 82.7 
St 8848A 0.171 2.386 4.628 75.8 
IL 8230.65 0.159 2.537 5.855 0.0 
IL 8286.35 0.138 2.165 3.427 0.0 

 
 

Table 29. Statistical parameters of 19 core samples  
after brine imbibition t2 scans 

Sample Maximum Skew Kurtosis BVW 
RR13 0.187 2.668 6.196 769.7 
RR14 0.167 2.563 5.796 466.6 
RR15 0.193 2.656 6.735 300.9 
RR20 0.186 2.628 5.978 330.6 
RRU 8719.75 0.206 2.718 6.486 468.6 
RRU 8713.5 0.166 2.369 4.507 624.4 
RRU 8715.35 0.174 2.543 5.496 1062.5 
St 8188B 0.098 1.397 1.234 66.6 
St 8801B 0.152 2.414 5.744 47.2 
St 8801A 0.155 2.393 5.083 59.9 
St 8800 0.140 2.207 4.757 57.1 
St 8785 0.123 1.908 2.331 22.5 
St 8831A 0.172 2.609 6.572 69.9 
St 8293 0.185 2.913 8.338 136.0 
St 8831B 0.143 2.144 3.483 80.5 
St 8845A 0.178 2.709 6.398 179.8 
St 8848A 0.178 2.606 5.927 238.7 
IL 8230.65 0.146 2.288 4.677 275.7 
IL 8286.35 0.154 2.415 5.057 193.7 

 
 

Table 30. Statistical parameters of 19 core samples 
after surfactant imbibition t2 scans 

Sample Maximum Skew Kurtosis BVW 
RR13 0.158 2.431 5.135 769.7 
RR14 0.139 2.321 4.674 466.6 
RR15 0.229 2.923 8.769 300.9 
RR20 0.192 2.722 6.490 330.6 
RRU 8719.75 0.173 2.553 5.594 468.6 
RRU 8713.5 0.159 2.409 4.882 624.4 
RRU 8715.35 0.177 2.650 6.147 1062.5 
St 8188B 0.066 0.430 -1.370 66.6 
St 8801B 0.125 1.687 2.233 47.2 
St 8801A 0.138 2.174 4.527 59.9 
St 8800 0.132 2.010 3.832 57.1 
St 8785 0.072 0.841 -1.114 22.5 
St 8831A 0.130 2.403 5.815 69.9 
St 8293 0.177 2.646 6.641 136.0 
St 8831B 0.143 2.144 3.483 80.5 
St 8845A 0.211 2.906 7.742 179.8 
St 8848A 0.167 2.716 6.484 238.7 
IL 8230.65 0.075 1.129 -0.322 275.7 
IL 8286.35 0.156 2.357 4.709 193.7 
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The purpose of generating the correlations is to predict the change in water saturation 

following water imbibition and surfactant imbibition.  Water saturation was included in the 
output as BVW.  The water saturation was 0.0 in 8 of the 19 initial core scans.  If the "two 
samples per network tie-line rule" is imposed,17 the number of permissible correlating samples 
(initial only) is reduced to 11, which in turn limits the available neural network architectures to 
2-1-1.  Thus, the initial neural network training was done with the NMR data obtained following 
brine imbibition plus the surfactant results.  The statistical parameters skew, kurtosis, and 
maximum generated with this dataset are plotted versus BVW as shown in Figure 69.  Note that 
the data points flatten following 200 BVW indicating poor correlation. 
 

 
Figure 69.  Statistical parameters generated from after-brine imbibition T2 scans dataset. 

 By trial and error, it was determined that a 2-3-1 neural network with maximum and 
kurtosis of the after-brine imbibition dataset trained to a 95% correlation coefficient, as shown in 
Figure 70.  Table 31 shows the training results of the 13 network architectures that were tested. 
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Figure 70.  NORM Ccalc brine dataset training with maximum and kurtosis to predict brine BVW.  

 
  

Table 31. Training results of the 13 network architectures 
 Input 1 Input 2 Input 3 2-2-1 2-3-1 3-2-1 
Initial Maximum Skew  68 71  
Initial Maximum Kurtosis  61 69  
Initial Skew Kurtosis  75 75  
Initial Maximum Skew Kurtosis   66 
Brine Maximum Skew  90 90  
Brine Maximum Kurtosis  86 95  
Brine Skew Kurtosis  87 89  
Brine Maximum Skew Kurtosis   87 
Surfactant Maximum Skew  61 59  
Surfactant Maximum Kurtosis  58 0  
Surfactant Skew Kurtosis  86 59  
Surfactant Maximum Skew Kurtosis   61 
 
 The maximum and the kurtosis values of the dataset prior to imbibition and after 
surfactant imbibition were used as a blind test of the Brine 2-3-1 architecture.  The surfactant 
predictions shown plotted against the measured values are presented in Figure 71.   
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Figure 71.  Predicted after-surfactant imbibition versus measured BVW. 

 
 Based on the least square fit line correlation coefficient, the neural network correlation 
improves upon the NMR (CPMG method) calculated values that are plotted versus the measured 
values in Figure 72. 
 

 
Figure 72.  NMR calculated Sw following surfactant imbibition. 
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 The trained brine 2-3-1 neural network was used to predict the initial water saturations.  
The predictions are compared to actual in Figure 73. 
 

 
Figure 73.  2-3-1 neural network prediction versus measured values of Swi. 

The neural predictions are less reliable than the NMR calculated values shown in Figure 74. 
 

 
Figure 74.  NMR calculated Swi versus measured Swi. 
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Cost and Schedule Status 
 The grant deliverable was completed on schedule and within cost as specified in grant 
contract. 
 
Accomplishments 

1. Five different reservoir systems were evaluated in the laboratory for enhanced oil 
recovery via surfactant imbibition.   

2. High temperature (200oF) laboratory tests support the surfactant soak process in the 
Interlake and Stony Mountain dolomite reservoirs on the Cedar Creek anticline.  Future 
field tests are anticipated. 

3. The Red River reservoir on the Cedar Creek anticline is not universally oil-wet as 
generally believed. 

4. The San Andres laboratory work generated three field tests of the process. 
5. An AI correlation was developed to predict water-frac results in a tight oil reservoir. 
6. A review of 23 earlier surfactant soak field tests with updated production data showed 

that 4.5 lb of surfactant generated 1 bbl of incremental oil. 
7. Four publications were generated during the course of the 2-year project: 

• Xie, X., Weiss, W.W., Tong, Z., and Morrow, N.: “Improved Oil Recovery from 
Carbonate Reservoirs by Chemical Stimulations.” Journal of Petroleum Technology 
Vol. 57, No. 1, January 2005 (62-53). 

• Xie, X., Weiss, W.W., Tong, Z., and Morrow, N.: “Improved Oil Recovery from 
Carbonate Reservoirs by Chemical Stimulations.” SPE Journal, September 2005 
(276-285). 

• Weiss, W.W., Weiss, J.W., Subramaniam, V., and Xie, X.: “AI Applied to Evaluate 
Waterflood Response, Gas Behind Pipe, and Imbibition Stimulation Treatments,” 
Journal of Petroleum Science and Engineering, Vol 49, Issues 3-4, December 2005 
(110-121).  

• Weiss, W.W., Xie, X., Weiss, J.W., Subramanian, V., Taylor, A., and Edens, F.: 
“Artificial Intelligence Used to Evaluate 23 Single-Well Surfactant Soak 
Treatments,” SPE Paper 89457, SPE Reservoir Evaluation & Engineering, June, 
2006.  

 
 
Actual Problems 
 Delays in conducting the field tests were the result of oil company priorities.  In a similar 
vein, reservoir core and fluid samples were slow in arriving to the laboratory.  Engaging the 
service companies in this project led to one presentation to Occidental Petroleum.  Many more 
were envisioned.  
 
Technology Transfer Activities 
 As the laboratory results became available, they were presented to Encore Acquisition, 
ConocoPhillips, Yates Petroleum, Range Resources, Texland Petroleum, Cano Petroleum, and 
Kinder Morgan.  Additionally results of the San Andres laboratory work geared toward service 
company needs were presented to Tiorco and Gel-Tec, small niche-type service companies 
located in Denver, Colorado and Midland, Texas.   
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 Gel-Tec requested a sample of T91-8 for a bench scale study of the handling properties of 
the surfactant.  They will investigate potential mixing and foaming problems of the viscous 
surfactant when applied in the field.  It is expected that Gel-Tec and Tiorco will generate field 
tests of the technology in the San Andres and Phosphoria formations as well as create interest in 
the process among producers in the Arbuckle formation.   
 The laboratory and field results were used in the four publications mentioned above.  
Additionally the concepts developed during this research effort are being utilized in an effort to 
improve gas deliverability from natural gas storage reservoirs.   
 
Conclusions  
 Three of the five different reservoir systems evaluated in the laboratory suggested that oil 
recovery via spontaneous imbibition is a promising technique.  An update of previous field tests 
in the Phosphoria dolomite of the surfactant soak process demonstrated that the process can be 
profitable.  However, three field tests conducted in the West Fuhrman Masho San Andres 
dolomite were not successful.  Poor results were not anticipated based on the laboratory tests and 
a published report2 by Marathon of a successful San Andres test.   
 Additional tests in dolomite producing zones on the Cedar Creek anticline are 
anticipated, and the results of these tests will be incorporated into a database consisting of field 
tests conducted in a Big Horn Basin Phosphoria reservoir, a Permian Basin San Andres reservoir, 
and the Interlake and Stony Mountain reservoirs on the Cedar Creek anticline.   
 There is some evidence that a more detailed analysis of the gamma ray logs might 
correlate with surfactant soak performance.  Similar partial correlations were seen in the 
laboratory work.   To date, none of the evidence supports robust correlations; however, as the 
size of the database increases, it is expected that correlations will be developed using AI tools 
such as fuzzy logic and neural networks.  Additionally future work may improve the surfactant 
selection process. 
 High temperature imbibition tests were successfully conducted, demonstrating that 
spontaneous imbibition is a viable recovery process in the 200°F reservoirs on the Cedar Creek 
Anticline.  Unfortunately the measurement of porosity and saturations using NMR imaging 
techniques was not successful.  
 Due to the current state of activity in the domestic oil and gas business, long lead times 
are required to gather information and conduct field tests.  The high rate of activity affects both 
producing and service companies in their ability to meet non-contractual obligations.  
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