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The proliferation of expensive technology in diagnostic medicine demands objective, 
meaninghl assessments of diagnostic performance. Receiver Operating Characteristic 
(ROC) analysis is now recognized widely as the best approach to the task of measuring 
and specifying diagnostic accuracy (IMetz, 1978; Swets and Pickett, 1982; Beck and 
Schultz, 1986; Metz, 1986; Hanley, 1989; Zweig and Campbell, 1993), which is defined 
as the extent to which diagnoses agree with actual states of health or disease (Fryback and 
Thornbury, 1991 ; National Council on Radiation Protection and Measurements, 1995). 
The primary advantage of ROC analysis over alternative methodologies is that it 
separates differences among diagnostic decisions that are due to actual differences in 
discrimination capacity from those that are due to decision-threshold effects (e.g., “under- 
reading” or “over-reading”). An ROC curve measures diagnostic accuracy by displaying 
True Positive Fraction (TPF: the Itaction of patients actually having the disease in 
question that is diagnosed correctly as “positive”) as a function of False Positive Fraction 
(FPF: the fraction of patients actually without the disease that is diagnosed incorrectly as 
“positive”). Different points on the ROC curve - i.e., different compromises between 
the specificity and the sensitivity of a diagnostic test, for a given inherent accuracy - can 
be achieved by adopting different critical values of the diagnostic test’s “decision variable 
” - e.g., the observer’s degree of confidence that each case is positive or negative in a 
diagnostic image-reading task, or the numerical value of the result of a quantitative 
diagnostic test. 

ROC techniques have been used to measure and specify the diagnostic performance 
of medical imaging systems since the early 197Os, and the needs that arise in this 
application have spurred a variety of new methodological developments. In particular, 
substantial progress has been made in ROC curve fitting and in developing statistical tests 
to evaluate the significance of measured differences between ROC curves. These are 
especially important tasks in medical applications, because various practical issues 
usually limit the number of patients with clearly established diagnostic truth that can be 
included in any study that seeks to measure diagnostic performance objectively. Other 
progress has been made in relating ROC analysis to cost/benefit analysis, and in 
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generalizing ROC methods to accommodate some diagnostic tasks where more than two 
decision alternatives are available. 

ROC analysis clearly provides the most rigorous and fruitful approach for such 
assessments but, like many other powerful techniques that provide useful insight 
concerning complex situations, it currently suffers fkom limitations, particularly in 
evaluation studies that involve small case samples. However, the potential of this 
relatively new analytic approach and the concepts on which it is based have not been fully 
explored. The research proposed here is designed to refine and supplement existing ROC 
methodology to increase both the accuracy and the precision of its results. 

Dr. Metz has played a key role since the early 1970s in developing ROC 
methodology for the evaluation of diagnostic medical procedures. He and his colleagues 
were the first to generalize ROC analysis so that it applies to diagnostic tasks involving 
more than two decision alternatives (Starr, Metz, Lusted and Goodenough, 1975; Metz, 
Stan and Lusted, 1976); to propose and validate a formal statistical test for differences 
between binormal ROC curve estimates (Metz and Kronman, 1980); to propose and 
validate a parametric approach for testing the significance of differences between ROC 
curves estimated from correlated data (Metz, Wang and Kronman, 1984); and to propose 
and validate a model that predicts the gains in accuracy which are available fiom 
replicated readings of diagnostic images (Metz and Shen, 1992). Dr. Metz’s tutorial 
publications (especially Metz, 1978; Metz, 1986; and Metz, 1989) also have fostered the 
now-widespread use of ROC analysis in medical imaging and its growing acceptance in 
other medical disciplines. 

B. Research accomplishments 

1. Distribution of ROC software 

We have been developing computer software for maximum-likelihood estimation of 
ROC curves and for testing the statistical significance of differences between ROC curves 
and indices since the late 1970s (Metz and Kronman, 1980; Metz, Wang and Kronman, 
1984; Metz, 1989). Currently, eight programs are available in versions for computers that 
employ the Microsoft Windows and UNIX operating systems. The six most frequently 
requested programs are available also in versions for the Apple Macintosh. 

Our software, which we provide without charge to all investigators who request it, is 
now generally accepted as the standard for ROC data analysis in medical imaging 
applications. Most of our software’s users obtain the programs by downloading them 
from a World Wide Web page which we created for that purpose at <http://www- 
radiology.uchicago.edu/cgi-bin/software.cgi>. Beginning with 667 registered users on 
April 1, 1997, an additional 836 registered users obtained copies during the subsequent 
two-year funding period, thereby achieving a total of 1503 registered users on March 31, 
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1999. On January 7, 2003, as this report is written, the total number of registered users 
has reached 5667. 

2. Maximum-likelihood estimation of ROC curves from continuously- 
distributed data 

Until recently, rigorous ROC curve-fitting techniques were available only for data 
collected on a discrete categorical scale. However, data fiom clinical laboratory tests 
usually are collected on a continuous scale, and continuous scales are used increasingly to 
collect data in diagnostic image-reading studies (Rockette, Gur and Metz, 1992). We 
were able to prove theoretically that “truth-state runs” in rank-ordered outcomes of 
continuously-distributed data constitute a natural “categorization” of such data for 
maximum-likelihood (ML) estimation of ROC curves. On the basis of this insight, we 
developed two new algorithms for fitting binormal ROC curves to continuously- 
distributed data: a true ML algorithm (LABROC4) and a quasi-ML algorithm 
(LABROCS) that requires substantially less computation with large datasets. Extensive 
simulation studies demonstrate that both algorithms produce reliable estimates of the 
binormal ROC parameters a and b, the ROC-area index A,, and the standard errors of 
those estimates. A paper describing our approach and the LABROC algorithms (Metz, 
Herman and Shen, 1998) provided the first firm theoretical basis for fitting ROC curves 
to continuously-distributed data by maximum likelihood estimation, though an 
alternative, computationally more demanding approach based solely on rank-order 
statistics was proposed subsequently by Zou and Hall (1 997). 

3. Maximum-likelihood estimation of “proper” binormal ROC curves 

The conventional binormal model of ROC analysis - which assumes that a latent 
(i.e., effective) pair of normal decision-variable distributions can be used to represent 
experimental data but does not assume that the data themselves are normally distributed 
(Metz, 1986; Hanley, 1988) - has been used for many years to fit smooth ROC curves to 
data @orfinan and Alf, 1969; Swets, 1986; Hanley, 1988; Hanley, 1996; Hajian-Tilaki et 
al., 1997), and algorithms such as RSCORE (Donald D. Dorfinan, Ph.D., in Swets and 
Pickett, 1982) and ROCFIT (Metz, 1989) are readily available for maximum-likelihood 
estimation (MLE) of such curves, When ROC curves with this form are fit to sufficiently 
large datasets, they rise rapidly from the lower-left corner of the unit square and then 
bend smoothly and steadily into the upper-right comer. However, if the conventional 
binormal model is used for small datasets or datasets with poorly allocated category 
boundaries, a “hook” in the fitted ROC curve may be evident near the upper-right or 
lower-left comer of the unit square, causing the neighboring part of the ROC to drop 
below the 45” “guessing line,” Such ROC curves are said to be “improper,” because their 
non-monotonic slope indicates that they could not have been produced by an optimal 
decision rule. In extreme situations of this kind, the data are fit exactly by a “degenerate” 
limiting form of the conventional binormal ROC that consists of vertical and horizontal 
line segments (Metz, 1989). To overcome these curve-fitting artifacts, we developed a 
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“proper” binormal model and a new algorithm for MLE of the corresponding ROC 
curves. Like the conventional binormal model, our new model is based upon an implicit 
assumption that an effective pair of normal distributions underlies the data. However, the 
“proper” binormal model assumes that the ROC data were produced by a decision 
variable that corresponds to the likelihood ratio associated with the pair of normal 
distributions, rather than to the normally-distributed quantity itself. 

MLE of the parameters of the proper binormal model can be difficult, because some 
substantially different combinations of parameter values produce very similar ‘ROCs, 
causing the likelihood functions of some datasets to have long, narrow “ridges” in 
parameter space. We were able to overcome this problem by appropriate re- 
parameterization of the model and use of a novel iterative scheme. Extensive simulation 
studies have shown the resulting curve-fitting algorithm, entitled PROPROC, to be highly 
robust. Maximum-likelihood ROC curve estimates obtained from the proper and 
conventional binormal models were virtually identical when the conventional binormal 
ROC showed no “hook,” but the proper binormal curves had monotonic slope for all 
datasets, including those for which the conventional model produced degenerate (Metz, 
1989) fits. Our simulation studies showed also that PROPROC estimated the population 
ROC curves and the total-area (Metz, 1986) and partial-area accuracy indices (McClish, 
1989; Jiang, Metz and Nishikawa, 1996) of the population ROC curves with little bias. 
We published this work in two papers, one that focuses primarily on the ability of the 
proper-binormal approach to deal with “degenerate” datasets (Pan and Metz, 1997) and 
another that provided a detailed description of the theory and a computational algorithm 
that implements it (Metz and Pan, 1999). We also collaborated in developing and 
evaluating an alternative “proper” ROC approach that is based upon an underlying pair of 
gamma distributions (Dorfman, et al., 1997). 

4. Statistical comparison of two ROC curve estimates obtained from 
partially-paired datasets 

All previously-available techniques for testing the statistical significance of 
differences between ROC curve estimates apply only to either: (i) “filly-paired” datasets, 
in which both diagnostic modalities in a comparison are applied to all of the patients in a 
single case sample; (ii) “unpaired” datasets, in which wholly independent case samples 
are obtained for the two modalities. Many evaluation studies are designed to obtain fully- 
paired datasets, due to the greater statistical power that pairing endows, but in practice 
data from only a single modality often are obtained for some patients. Stimulated by this 
need, we completed development of a rigorous theoretical basis for ROC analysis of such 
“partially-paired” datasets, and we developed, tested and debugged a new generalization 
of our CORROC algorithm (Metz, Wang and Kronman, 1984) that applies to such 
“partially-paired” datasets. We then performed extensive computer-simulation studies 
that evaluated the validity of the new algorithm’s statistical test for differences in the 
conventional binormal ROC area index, A,, by investigating the relationship between the 
algorithm’s empirical Type I error rate and the critical p-value (a) used for the test. We 



f l >  

J US Department of Ener; )rant DE-FG02-%ER61816 
Funding Period: 4/1/97 - 3/31/99 

Final Technical Report 
Page 5 of 8 

described this work in detail in a paper published in Medical Decision Making (Metz, 
Herman and Roe, 1998). 

5. ROCKIT: an integrated software package for analysis of ROC data 

We expect to release soon a new software package entitled ROCKIT that integrates 
five of our current programs (ROCFIT, LABROCS, INDROC, CORROC2, and 
CLABROC) into a single shell that will: (i) fit a single conventional binormal ROC curve 
to a single set of data collected on either a discrete or a continuous scale; (ii) test the 
statistical significance of a difference between conventional binormal ROC curves 
estimated from either paired or unpaired data that were collected on discrete and/or 
continuous scales; and/or (iii) estimate the effective correlation of paired data that are 
collected on discrete and/or continuous scales. An important innovation in ROCKIT is 
its ability to test the statistical significance of differences between ROC curves that are 
estimated fi-om partially-paired case samples, as described immediately above (Section 
4). ROCKIT also is able to read input files created by any of the five existing programs 
that it integrates, and it outputs 95% confidence intervals (Metz, 1993) for all of the 
estimates that it provides. 

6. Interpretation of variance components in analyses of ROC data 

Multivariate linear (“ANOVA”) models are being used increasingly in ROC analysis 
to assess statistical variation in ROC estimates @orfinan, Berbaum and Metz, 1992; 
Metz and Shen, 1992; Beam, 1995; Dorfinan and Metz, 1995; Gatsonis, 1995; 
Obuchowski, 1995). Most such models proposed for ROC applications represent the 
overall statistical variation in latent decision variables and/or in ROC index estimates by 
a sum of uncorrelated components that can be ascribed to differences between the 
diagnostic modalities under investigation, case-sample variation, reader variation, and 
interactions among these factors. However, the abstract nature of this practically- 
important statistical approach seems to have intimidated many investigators, thereby 
slowing its widespread adoption. In an attempt to overcome this problem, we developed 
notation that readily distinguishes variances and correlations that are associated with each 
method of replication and, for estimate differences, each estimate-pairing scheme that 
might be used in an ROC experiment. We then considered a general variance-component 
model for ROC index estimates and differences thereof, and we used that model to 
systematize the many variances and correlations that are observable in ROC experiments. 
In this way we were able to demonstrate hopefully intuitive relationships among notation, 
different methods of experimental replication, and particular components of the 
multivariate linear model. 

Specifically, we delineated four methods of replication and eight pairing schemes for 
generating ROC index-estimate differences by using a mixed linear model with one fixed 
factor (modality) and two random factors (reader and case sample). For each of the 
resulting 32 replication-pairing combinations, we then systematically expressed the 
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variance of the difference and the correlation between the two ROC estimates in terms of 
the variance components of our model (Roe and Metz, 1997). After exploring the 
relationship between expressions derived fiom our general multivariate linear model and 
expressions given by Swets and Pickett (1982), we concluded that the SwetsDickett 
approach overestimates variance in some situations (Roe and Metz, 1997). 
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