
Abstract— In the Fermilab Beam Loss Monitor System, inputs
from ion chambers are integrated for a short period of time,
digitized and processed to create the accelerator abort request
signals. The accelerator power supplies employing 3-phase 60Hz
AC cause noise at various harmonics on our inputs which must be
eliminated for monitoring purposes. During accelerator ramping,
both the sampling frequency and the amplitudes of the noise
components change. As such, traditional digital filtering can
partially reduce certain noise components but not all. A non-
traditional algorithm was developed in our work to eliminate
remaining ripples. The sequencing in the FPGA firmware is
conducted by a micro-sequencer core we developed: the Enclosed
Loop Micro-Sequencer (ELMS). The unique feature of the
ELMS is that it supports the “FOR” loops with pre-defined
iterations at the machine code level, which provides programming
convenience and avoids many micro-complexities from the
beginning.

Index Terms—Digital Data Processing, Embedded System,
Micro-processor, Micro-sequencer, FPGA, Reconfigurable
Computing.

I. INTRODUCTION
HE new Fermilab Beam Loss Monitor (BLM) readout
system [1] is designed to perform several tasks: to provide

a flexible and reliable abort system to protect Tevatron
magnets; to provide loss monitor data during normal
operations of the Tevatron, Main Injector and Booster; and to
provide detailed diagnostic loss histories when an abort
happens. Beam losses are detected using ion chambers.

The signals from the ion chambers are integrated for a short
period of time, typically 21 µs, and digitized to 16 bits. The
digital data are used to construct fast, slow and very-slow
sliding sums, which are a measure of the integrated loss over a
variety of time scales up to 64k cycles. The abort request
signals for each channel are made in firmware by comparing
these sums as well as the immediate measurement with
thresholds. The system abort signal is made by checking the
number of channels and types of abort request signals.

For the Main Injector BLM system, an integration sum for

Manuscript received April 30, 2007. This work was supported in part by

Universities Research Association Inc. under Contract No. DE-AC02-
76CH03000 with the United States Department of Energy.

The authors are with Fermi National Accelerator Laboratory, Batavia, IL
60510 USA (phone: 630-840-8911; fax: 630-840-2950; e-mail: jywu168@
fnal.gov).

each channel is accumulated.
In addition to producing abort request signals, the sliding

sums are also readout to monitor the beam loss. However, the
accelerator power supplies employing 3-phase 60Hz AC cause
noise at various harmonics on our inputs which can be larger
than the beam loss data in some channels. Both analog
methods, e.g., appropriate grounding scheme for the input
cables and digital methods are employed for noise reduction.
A special challenge for the digital processing in accelerator
systems is ramping, i.e., accelerating particles from lower
energy to higher energy. During accelerator ramping, both the
sampling frequency and the amplitudes of the noise
components change. A traditional digital filtering process was
implemented and it partially reduced certain noise components
but not all. A non-traditional algorithm was developed in our
work to eliminate the remaining ripples.

An FPGA firmware core for our sequencing control, called
the Enclosed Loop Micro-Sequencer (ELMS) is also described
in this document. The primary difference between the ELMS
and the regular micro-processor/micro-sequencer is that
“FOR” loops with pre-defined iterations at the machine code
level are supported in the ELMS making it self-sufficient to
run multi-layer nested-loop programs.

II. THE DIGITIZER CARD
A Digitizer Card (DC) integrates, digitizes and processes 4

channels of ion channel inputs. The partial block diagram for
the FPGA calculating the sliding sums is shown in Fig. 1.

Each input from the ion chamber is integrated by two

integrators alternately in ping-pong fashion. The output
voltages of the integrators reflect the charges due to beam loss
and are then digitized by an ADC device (AD7654AST) at
about 21 µs per sample and input into an FPGA (with project

Readout Process & Noise Elimination Firmware
for the Fermilab Beam Loss Monitor System

Jinyuan Wu, Alan Baumbaugh, Craig Drennan, Randy Thurman-Keup, Jonathan Lewis & Zonghan
Shi

T

ADC
21µs/sample

RAM

Fast
Sliding Sum

A>B

Slow
Sliding Sum

Very Slow
Sliding Sum

Immediate
Sliding Sum Threshold I

Abort
Logic

A>B
Threshold F

A>B
Threshold S

A>B
Threshold V

CIC
Sums

De-ripple
Process

Ion Chamber
Input

Seq128

ADC
21µs/sample

ADC
21µs/sample

RAM

Fast
Sliding Sum

A>B

Slow
Sliding Sum

Very Slow
Sliding Sum

Immediate
Sliding Sum Threshold I

Abort
Logic

A>B
Threshold F

A>B
Threshold S

A>B
Threshold V

CIC
Sums

De-ripple
Process

Ion Chamber
Input

Seq128

Fig. 1. The partial block diagram of the Digitizer Card

FERMILAB-CONF-07-095-E

name Sums03) for digital processing.
A total of 16 sliding sums are to be kept in the FPGA. (In

addition to the fast, slow and very slow sliding sums, the
immediate measurement is implemented as a sliding sum with
sum length=1). They are compared with corresponding
thresholds pre-loaded into the FPGA to produce 16 abort
request signals indicating the channel and type of the abort
request. The FPGA also produces several other “de-rippled”
values for monitoring purposes which will be described in
detail in later sections. If all sums were kept using
accumulators, the FPGA would easily consume several
thousand logic elements, out of 5980 logic elements in the
Altera Cyclone EP1C6 device we use.

On the other hand, during a 21 µs period, there are more
than 1000 clock cycles at 50 MHz inside the FPGA. Clearly it
is more economical to calculate 16 sliding sums and to
perform other tasks sequentially using one set of data
processing resources. The sequence is conducted by the
“Seq128” block with an ELMS block inside.

For the Main Injector BLM system, integrations must be
computed. In order to compute the integrations properly, the
pedestal for each channel is first calculated. At the beginning
of each beam cycle when there is no beam, about 752 readings
for each channel are accumulated to measure the pedestal.

For the Main Injector the very-slow sliding sum of each
channel has a sum length of about 64 and now represents a
smoothed version of the input. For each measurement, the
pedestal is subtracted from the very-slow sliding sum with an
appropriate scaling and the difference can be optionally
compared with a user-defined value called the “squelch level”.
If the difference is bigger than the squelch level, the input
signal is considered bigger than noise and it is added into the
integration sum. Otherwise, the input signal is considered
below the noise level and the integration sum is kept
unchanged.

III. THE DE-RIPPLE PROCESS
In addition to calculating the 16 sliding sums and generating

corresponding abort request signals, the Digitizer Card also
outputs various values for monitoring of the beam loss.

The signal cables in the MI tunnel pick up noise generated
by equipment powered by 3-phase 60Hz AC. It contains
primarily harmonics of 60Hz, 180Hz and multiples of 360Hz.
The noise level is higher than the desired signal and the noise
peaks exist at both higher and lower frequencies compared to
the signal spectrum. A typical set of raw measurement data
and their spectrum are shown in Fig. 2 and Fig. 3.

A natural approach of eliminating noise is filtering. In fact,
calculating sliding sums can be viewed as a digital filtering
process. The fast sliding sum over a length of 128 shown in
Fig. 2 has reduced the noise level from about 10 ADC counts
in the raw data down to about 2 ADC counts. Some beam loss
can be seen in the fast sliding sum plot.

However, the sliding sum is a low pass filter with a sinc(x)
function shaped frequency response. The zeros of the sinc(x)
are very sharp and it is hard to align them with the noise peaks,
especially when the sampling frequency is not an integer
multiple of 60Hz and when the accelerator ramps which varies
the sampling frequency. Also the side lobes of the sinc(x) are
not low enough. Therefore, the plot of the fast sliding sum still
contains glitches along with unfiltered 60Hz and 180Hz
components.

The de-ripple process further eliminates remaining noise
components so that smaller beam losses become visible. The
process takes the following steps:

1. Calculating the Cascaded Integrator-Comb (CIC) sums.
2. Waveform extraction, storage and validation.
3. Waveform subtraction.

A. Calculating the Cascaded Integrator-Comb (CIC) Sums
The cascaded integrator-comb (CIC) digital filter [2] of

order N contains N cascaded stages. Each stage is a moving
average filter which is a CIC filter of order 1. The sliding sum
can be viewed as a CIC filter of order 1 with un-normalized
gain. The CIC sums implemented in the Sums03 FPGA
firmware are CIC filters of order 2, which can be viewed as the
sliding sum of the sliding sum of the raw data.

The frequency response shape of the CIC sums is sinc2(x) in

0

1000

2000

3000

4000

5000

6000

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600

frequency (Hz)

A
m

pl
itu

de

Fig. 3. The frequency spectrum of raw measurement data

780

782

784

786

788

790

792

794

796

798

800

0 5000 10000 15000 20000 25000 30000

Raw Data Fast Sliding Sum

Fig. 2. The raw measurement data and the fast sliding sum

which the zeros become the second order ones that provide
deeper attenuation to the noise peaks even though the peaks
are not precisely aligned with the zeros. The side lobes also
become lower. In Fig. 4, the sliding sums (FS) and the CIC
sums of a set of typical measurement data are plotted (with
appropriate scales and an artificial offset). It can be seen that
the CIC sums are significantly smoother than the sliding sum.

The CIC sum y[n] and sliding sum s[m] of input sequence

x[j] with sum length K in our work are defined as:

 ∑∑
−−

=

−−

=

==
)1()1(

][][][][
Km

mj

Kn

nm
jxmsmsny

The sum length K for the CIC sums in our firmware is
chosen to be 124-128, which brings the first zero to 360Hz. It
can be reasonably assumed that the CIC sums are band limited
to 360Hz.

In the practical firmware, the accumulations above are
implemented recursively as shown in Fig. 5.

Both left and right diagrams in Fig. 5 are valid CIC sum

implementations and the resource usages are comparable.
However in our application, we would like avoid adding a
separate storage for s[n], given that a record of up to 64K raw
measurement points x[j] are available. The formula for the
CIC sum is altered as shown in the right diagram, which
contains two recursive accumulations:

][]1[][

]2[][2][]1[][
nunyny

KnxKnxnxnunu
+−=

−+−−+−=

This way, the only additional storage is the intermediate
value u[n], which takes only one memory space. This way, no
additional long record of intermediate values needs to be
stored.

B. Waveform Extraction, Storage and Validation
The “de-ripple” process involves simply subtracting the

noise waveform from the current CIC sum. The waveform is a
record of previous CIC sums of one period (1/60Hz = 16.7ms)
long which are believed not to be contaminated by abrupt
beam loss (although a DC or very slow beam loss is allowed).
In the BLM digitizer FPGA firmware, the calculated CIC sums
are directly stored as the waveform data.

Since the CIC sums are band limited to about 360Hz, it is
possible to decimate the y[n] sequence to save storage space
without losing information. The decimation counter is a 24-bit
accumulator that increases by 22336 for every input point or
about every 21µs. The top 7 bits are used as address to the
waveform WF storage memories. This way, 128 CIC sum
points are stored for the time period of 1/60Hz. The
separation of two decimated points is 5 or 6 raw data points.
The effects of non-uniform decimation are negligible for our
application, although interpolation algorithms are available to
reduce the effects. The block diagram of the de-ripple
processor is shown in Fig. 6.

The waveform storage memories are split into two pages for

each channel. The CIC sums are written into the page as the
tentative waveform which must be validated through the
period. Meanwhile, for each channel, a sum of the waveform
is accumulated to calculate the waveform mean value, WM.
After accumulating 128 points for the entire period, the sum is
simply the waveform mean scaled by a factor of 128, or 7 bits.
This is the reason for choosing the decimation scheme
mentioned above.

Two CIC sums are calculated, the current one y[n] and the
one a period before y[n-L], where L is the length
corresponding to a period which is about 752. During the
period, the absolute value of the difference of the two CIC
sums is constantly compared with a parameter MaxDY. If the
difference between the two CIC sums is bigger than the
predefined limit MaxDY, there may be an abrupt beam loss in
the period. The waveform then is considered invalid. If the
differences in the entire period are within the predefined limit,
the waveform becomes valid.

At the end of each period, if the waveform is valid, a 1-bit
counter PG flips, which swaps the tentative waveform page to
the usable waveform page. The new tentative waveform is

Fig. 4. The sliding sum and the CIC sum

+
u[n]

-2x[n-K]

x[n]

+
y[n]

x[n-2K] +
u[n-L]

-2x[n-L-K]

+
y[n-L]

x[n-L-2K]

x[n-L]

If |y[n]-y[n-L]|>MaxDY for
entire period, then PG++.WF

PG=0
WF

PG=1
Σ PGΣ

--
-

WF-WM DR=y[n]-(WF-WM)

MaxDY
Decimation

Counter

+
u[n]

-2x[n-K]

x[n]

+
y[n]

x[n-2K] +
u[n-L]

-2x[n-L-K]

+
y[n-L]

x[n-L-2K]

x[n-L]

If |y[n]-y[n-L]|>MaxDY for
entire period, then PG++.WF

PG=0
WF

PG=1
Σ PGΣ

--
-

WF-WM DR=y[n]-(WF-WM)

MaxDY
Decimation

Counter

Fig. 6. The de-ripple process

+
s[n]

-x[n-K]

x[n]

+
y[n]

-s[n-K]

+
s[n]

-x[n-K]

x[n]

+
y[n]

-s[n-K]

+
u[n]

-2x[n-K]

x[n]

+
y[n]

x[n-2K]+
u[n]

-2x[n-K]

x[n]

+
y[n]

x[n-2K]

Fig. 5. The CIC sum calculation

stored in another page until it becomes a valid waveform at the
end of another period.

At the initial time after reset, the firmware logic forces the
value (WF-WM)=0. After the waveform of a period becomes
valid, it outputs the latest valid one.

C. Waveform Subtraction
Once the waveform becomes valid, waveform subtraction

can be performed to get the de-rippled sum DR. The stored
waveform WF contains a DC component, which represents the
slow beam loss during the period when the waveform was
recorded. To assure the slow beam loss at current time is
correctly preserved, the DC balanced waveform (WF-WM) is
used in the subtraction. As mentioned above, the WM is the
waveform mean accumulated during the waveform recording
period and therefore the mean of (WF-WM) over the same
period is zero or DC balanced. Results of the full de-ripple
process is shown in Fig. 7.

In order to see the curves clearly, each curve is added with

an offset. The second curve is the CIC sum with a sum length
of 128. For reference, the sliding sum FS with the same sum
length is also shown as the first trace. The waveform WF in
general takes 3 periods to become valid. In the first 3 periods,
WF and WM are forced to be 0. The de-rippled output DR,
the bottom curve, first follows the CIC sum for 3 periods since
WF is invalid. Then it becomes a smooth curve with 60Hz and
180Hz ripples canceled. It can be seen that in the DR sum,
both abrupt and slow beam losses become visible.

IV. THE ENCLOSED LOOP MICRO-SEQUENCER

A. Sequence Control Options
As mentioned earlier the functions in the Sum03 FPGA are

performed sequentially. Sequence control is normally
implemented using either finite state machines (FSM) or
embedded micro-processor cores. When an input data item is
to be fed through a fast and very simple process, typically
using a few clock cycles, FSM is a suitable means of sequence
control. FSM also responds to external conditions promptly
and accurately. However, the sequence or program in the
FSM is not easy to change and debug, especially when
irregularities exist in the sequence. Also, the state machines
occupy logic elements no matter how rarely they are used. So
it is not economical to use FSM to implement the occasionally-
used sequences such as initialization, communication channel

establishment, etc.
Embedded microprocessor is another option of sequence

control. The drawback of a microprocessor is the large
resource usage. The micro-processor is a better choice only if
a data item is to be processed with a very complicated
program, typically using thousands of clock cycles.

When a data item is to be processed with a medium length
program, e.g., using a few hundred clock cycles, a micro-
sequencer becomes a better option. We have developed a
micro-sequencer in our FPGA called the Enclosed Loop
Micro-Sequencer (ELMS). The primary difference between
the ELMS and regular micro-processor/micro-sequencer is that
the ELMS supports “FOR” loops with predefined iterations at
the machine code level and is self-sufficient to run multi-layer
nested-loop programs.

B. Description
A detailed block diagram of the ELMS is shown in Fig 8.

The program is stored in a 36-bit x 128-word ROM in our
example. Clearly the instruction width and memory depth can
be flexibly chosen for different applications as necessary.
Also, ROM’s in FPGA are typically implemented with dual-
port random access memories (RAM’s), which allows the
users to overwrite its contents so that new programs can be
loaded. However, if the program is not to be changed during
operation, a block memory organized as a ROM with the
program pre-stored is more convenient.

Both unconditional and conditional branches are supported

as in regular micro-processors. We have used non-pipelined
branch logic in our example for simplicity.

The Loop & Return Registers (LRR) along with a 128-word
stack are the primary elements designed to support the
constant iteration “FOR” loops.

Some ELMS instructions are shown in Table I.

Fig. 7. The de-ripple results

ROM
128x

36bits

+1

CondJMP

PC

Reset

Loop & Return
Registers

+ Stack (128 words)

Compare

RTNJMPIF

CNT

endA

bckA

Push
Pop

LoopBack

DEC

RTN

LastPass

LoopBack = DEC =
(PC==endA) && (CNT!=0)

LastPass =
(PC==endA) && (CNT==1)

User
Control
Signals

desA

JMP

0x04

RUNat04 cnt EndA BckA

ROM
128x

36bits

+1

CondJMP

PC

Reset

Loop & Return
Registers

+ Stack (128 words)

Compare

RTNJMPIF

CNT

endA

bckA

Push
Pop

LoopBack

DEC

RTN

LastPass

LoopBack = DEC =
(PC==endA) && (CNT!=0)

LastPass =
(PC==endA) && (CNT==1)

User
Control
Signals

desA

JMP

0x04

RUNat04 cnt EndA BckA

Fig. 8. Detailed block diagram of the Enclosed Loop Micro-Sequencer
(ELMS): The Loop & Return Registers + Stack block provides support of
the “FOR” loop with constant iterations.

The ELMS instructions are 36-bit words. When any of the
bits 32-35 is set, the word represents a program control
instruction. Otherwise, it is treated as a user instruction. In
the ELMS, the only built-in instructions are the program
control instructions. All other instructions can be freely
defined by the users.

C. The Branch Instructions
The unconditional branch instruction JMP is implemented

as in typical micro-processors. When bit 35 is set, bit field
desA (only the lower 7 bits are used in our example) is
selected as the PC for next clock cycle.

The conditional branch instruction JMPIF is signified when
bit 32 is set. An input line CondJMP is supplied from external
user logic as the branch condition, i.e., the PC jumps to desA
only when CondJMP is high. The branch condition in the
ELMS is treated as a result from the external data processing
resources. It is the users’ responsibility to generate this signal
and assure that it is valid when reaching the conditional branch
instruction. This design arrangement allows us to avoid using
an ALU in the sequencer.

In the non-pipelined design, the branch logic is the most
latency critical part. When a JMP or JMPIF instruction is
present at the output of the ROM, the signals must flow
through several layers of multiplexers, arriving at the address
registers of the ROM with sufficient setup time. We have been
able to compile the non-pipelined design in an Altera Cyclone
FPGA device EP1C6Q240C6 [3] with a 153 MHz maximum
operating frequency.

To increase the operating frequency further, a pipelined
design can be used, i.e., assigning registers on both input and
output ports of the ROM. We have compiled a pipelined
version in the same device with a 250 MHz maximum
operating frequency. However, a pipeline bubble (no-op
instruction) or out-of-order time slot must be added after the
JMP or JMPIF instructions.

In our application, the clock inside the FPGA is 50 MHz.
That’s why we chose a non-pipelined design in our example.

The branch instructions are to be used only when it is
necessary.

D. The FOR Instruction
Supporting FOR loops with predefined iterations at machine

code level is a special feature of the ELMS.
When bit 33 is set, the instruction starts a FOR loop in

which the bit fields BckA, EndA and cnt are pushed into the
corresponding LRR/stack. The PC is incremented until
reaching EndA, and then it is set back to BckA. This
continues for (cnt+1) passes. Then the stack is popped on the

last pass of the loop.
A program segment with a FOR loop may look like the

following:
 FOR BckA1 EndA1 5
 Initialization Processes
BckA1
 Repeating Processes
EndA1
After the FOR instruction, the instructions before PC =

BckA1 are executed once, essentially serving as initialization.
Then the instructions between PC = BckA1 and EndA1
(inclusive) are executed (cnt+1) or 6 times in this example.
Note that there is no conditional branch instruction at EndA1.
The ELMS conducts the loop sequence by itself.

Another interesting point is that the LRR + stack structure
appears like a Branch Target Buffer (BTB) in advanced micro-
processors [4]. Indeed, the LRR + stack stores information of
the targets to be branched to. However, the PC jumps in
ELMS are pre-defined by the FOR instruction and are not
based on predictions. Thus the sequencing performance of the
ELMS is deterministic rather than statistical.

E. The CALL and RTN Instructions
The CALL instruction is implemented as a combination of

the FOR and JMP instructions with cnt automatically set equal
to 1. At the CALL instruction, the PC jumps to desA while
BckA and EndA are pushed into the LRR/stack. When PC
reaches EndA or when a RTN instruction is seen, the PC
jumps back to BckA and the stack is popped. Note that in
addition to a regular return instruction, the return point from
the subroutine is also pre-defined to be EndA, which allows an
alternative means of subroutine return that provides extra
convenience.

A program segment with CALL/RTN instructions may look
like the following:

 CALL BckA1 EndA1 DesA1
BckA1
 Processes after Subroutine Return
DesA1
 Subroutine
EndA1 RTN (optional)
After the CALL instruction, the PC jumps to DesA1 to

execute the subroutine. Once PC reaches EndA1, it returns to
BckA1. The instruction at EndA1 does not need to be RTN.
Therefore any program segment can be called as a subroutine.

The RTN instruction is provided primarily for possible early
returns in the subroutines. The RTN instruction may also be
used when early breaks are needed in the FOR loops.

F. Nesting Loops
Multi-layer FOR or CALL loops can be nested. When an

inner layer starts, the parameters of the unfinished outer loop
are pushed into the stack, which allows the outer loop to
continue after the inner loop finishes.

Note that in the FOR loops, inner loops can be nested not
only in the repeating processes, but also in the initialization
processes. This design arrangement provides convenience for
the programmers when subroutine calls or FOR loops are

TABLE I
PROGRAM CONTROL INSTRUCTIONS

35 34 33 32 31:24 23:16 15:8 7:0 Notes
JMP 1 0 0 0 desA Unconditional go to desA
JMPIF 0 0 0 1 desA Conditional go to desA
FOR 0 0 1 0 BckA EndA cnt Repeat cnt+1 times form BckA to EndA
CALL 1 0 1 0 BckA EndA desA Go to desA, upon PC=EndA, go BckA
RTN 0 1 0 0 Return, pop stack

0 0 0 0 X X X X User instructions

needed in the initialization, such as presetting an array.
Up to 128 layers of loops can be nested. It is the users’

responsibility not to nest more than 128 layers of loops. This
should be sufficient for most applications. For example, if 64
layers of FOR loops, each iterating 2 times, are nested
together, it will take the sequencer, operating at 250 MHz,
more than 2000 years to complete.

G. The User Instructions
When the bits 32-35 of the instruction word are all 0, the

word represents a user instruction. The users have maximum
flexibility to define their own instruction sets based on the
application. We present the instruction set we used for the
Fermilab BLM system as an example shown here in Table II.

A user instruction contains four instruction fields, 4 bits

each: SEQA, SEQB, SEQC and SEQDQQ; and two
address/data fields: ADH and ADL. Each instruction field is
decoded into up to 15 control signals with names shown in

Table II. The SEQDQQ are delayed by a pipeline step before
being decoded. The control signals generated from SEQDQQ
are essentially register enable signals for reading out contents
from the Parameter RAM and the Sum Keeping RAM that are
registered on input port. The ADH and ADL fields are used to
provide addresses for memory access or to specify initial
values for some registers.

Sometimes, several control signals must be turned on
simultaneously. While defining the instruction set, signals that
might be turned on simultaneously are carefully assigned to
different columns in Table II.

H. Sample Codes
The ELMS codes for calculating 16 sliding sums in our

application are shown in Table III.
After reset, the PC starts from 00. The sequencer runs into

a dead loop at PC = 03. The unconditional instruction, JMP to
03 is “executed” every clock cycle. However, there is no bit
flipping at all. The sequencer and the logic it controls are
effectively in a sleep mode that consumes no dynamic power.

When an external “do sums” signal arrives, the “RUNat04”
signal in Fig. 8 is turned on for a clock cycle that forces the PC
to become 04. The ELMS then goes through the sequence of
calculating the sliding sums. The FOR instruction at PC = 07
sets the outer loop for the 4 types of sliding sums (immediate,
fast, slow and very-slow). Then the FOR instruction at PC =
0A sets the inner loop for 4 input channels. The type and
channel of the sliding sums are indexed by two counters that
are initialized and incremented by the SetType, IncType,
SetCh and IncCh instructions, respectively.

The “compiler” we used is a Microsoft Excel spread sheet.
The search and index functions are used to find labels and
instructions. Each row is composed as a 36-bit integer in the
column “code”. The columns “PC” and “code” are copied to
another worksheet, which is then saved as a text file. The text

TABLE II
THE USER INSTRUCTION SET USED IN FERMILAB BLM SYSTEM

Bit 35:32 31:28 27:24 23:20 19:16 15:8 7:0
0000 SEQA SEQB SEQC SEQDQQ ADH ADL

Branch
Instruction SEQA[] SEQB[] SEQC[] SEQDQQ[]

0
1JMPIF IncCirBufPT SetType SetCh EnQLen
2FOR ChkJMPcond IncType IncCh EnQCH
3 SelSumLengths SubQLen SelQWF
4RTN EnSumsMemA SelCurrAddr ShiftM1 LdModeSelX
5 SumsMemCS SumsMemOE SumsMemWE LdDAC_OutX
6 WRsumXa SelQSqch EnQTailSqch
7 WRsumXb Sel64HI LdSumMQH
8JMP SubSumD SelInitValue LdSumMQ
9 EnSumD sloadSumD SelSumMQQ EnQSqch

10CALL LatchIntg SelSumMQQShift EnQPedL
11 WRsumX SelIntgX SelQCH EnQPedH
12BRK ChkSumsOT ChkIntgOT SelTailSqch
13 WRwaveform SelPed
14 WRconstX SelConstH OnLatchX
15 WrDACs EndCycle

TABLE III
SAMPLE CODES OF THE ELMS

PC Label
BR
Instr. BckA EndA cnt/desA SEQA SEQB SEQC SEQDQQ ADH ADL code Notes

00 000000000
01 000000000
02 000000000
03 DeadBk3 8JMP DeadBk3 03 800000003 dead loop after reset
04 000000000 do sums begins at 0x04
05 1 IncCirBufPT 010000000
06 1SetType 0 001000000 *** sliding sums begin ***
07 2FOR TypeBgn1 08 TypeEnd1 173 3 200081703
08 TypeBgn1 3 SelSumLengths 1 EnQLen 40 030010040 load sum length of the type
09 1 SetCh 0 000100000
0A 2FOR ChBgn1 0B ChEnd1 163 3 2000B1603
0B ChBgn1 2 EnQCH 48 000020048 current hit
0C 8 LdSumMQ 80 000088000 stored sum
0D 4 EnSumsMemA 4 LdModeSelX 68 040040068
0E 5 SumsMemCS 5SumsMemOE 055000000
0F 5 SumsMemCS 5SumsMemOE 6 EnQTailSqch 055600000 load tail
10 9 EnSumD 9sloadSumD 9 SelSumMQQ 099900000 old sum
11 9 EnSumD 11SelQCH 090B00000 +current value
12 9 EnSumD 8SubSumD 12SelTailSqch 098C00000 -tail = new sum
13 000000000
14 11WRsumX 80 0B0008000
15 12ChkSumsOT 0C0000000
16 ChEnd1 2 IncCh 000200000
17 TypeEnd1 2 IncType 002000000 *** sliding sums fin ***

file can be directly used as a “memory initialization file” that
specifies the ROM contents in the FPGA.

V. FPGA IMPLEMENTATIONS
The firmware with project name Sums03 that calculates the

sliding sums, generates abort request signals and performs de-
ripple functions has been implemented in a low cost FPGA
device, EP1C6Q240C6. The ELMS has been used in the
block Seq128 in the FPGA for sequence control. For
evaluating the idea of the ELMS, a bare ELMS circuit plus
three 8-bit accumulators has also been compiled and simulated
in a test project ELMS1 using the same FPGA device.
Compiled results are shown in Table IV.

It can be seen that the resource usage of the ELMS is very

small, leaving most portions of the FPGA for data processing
functions defined by users. As a result of using ELMS, a
significant portion of the resources for calculating the sliding
sums and the integration sums are reused multiple times for
each measurement. Without resource reusing, the whole
function would not fit our FPGA.

It is possible to find off-the-shelf micro-processor/micro-
sequencer IP with comparable resource usage. However, the
supporting of predefined FOR loops at machine code level is a
special and convenient feature of the ELMS. In fact, because
of its simplicity, the ELMS itself can become an off-the-shelf
solution for future projects. On the other hand, it is not
difficult to add the FOR loop support to a future version of an
existing IP.

Again because of the simplicity, it is very easy to compile
the ELMS with a high operating frequency. The non-pipelined
and pipelined versions of the ELMS1 project are compiled
with 153 MHz and 250 MHz maximum operating frequencies,
respectively, where 250MHz is the upper operating limit of the
M4K memory block in the device. The project Sums03 does
not need a high operating frequency since its internal clock is
only 50 MHz. The Sums03 project is compiled with a
maximum operating frequency of 61 MHz.

VI. DISCUSSION
Several design considerations of the firmware are to be

discussed in this section.

A. Several Remarks about the De-ripple Process
Traditional digital filtering performs well on eliminating

high frequency noise. In our firmware, we used a CIC filter of
order 2, i.e., the CIC sums to eliminate noise above 360Hz.
To eliminate low frequency components, however, traditional
digital filter needs a sufficiently long record, usually many
(1/60Hz) periods, of measurement data. In our system, there
are not very many periods after a reset and the amplitudes and
phases of the 60, 120 and 180 Hz noise components can be
different over a few (1/60Hz) periods before and after the
accelerator ramping.

Therefore, a noise waveform subtraction approach is chosen
for our de-ripple process in which a period of noise waveform
is stored for subtraction from the later measurements. Since
the noise components may change over a few periods, the
waveform is updated constantly. To assure the waveform is
free of abrupt beam loss, it is being validated using a periodic
condition (assuming the abrupt beam loss is not periodic)
while it is recorded. Finally, the effect of DC beam loss in the
waveform is canceled by subtraction of the waveform mean
from the waveform.

B. The Sequencer without Data Processing Resources
In history, there are computers employing the “Harvard”

architecture [5] in which storages of program and data are
physically separated. Most of today’s general purpose micro-
processors use the “Princeton” architecture in which the
program and data are stored in the same external memory.
However, inside the micro-processor, the program and data are
usually stored in separate caches and at this level it is the
Harvard structure again.

In the ELMS, the data and program are further separated
beyond the Harvard architecture. A micro-sequencer is not a
CPU since the sequencer itself does not have capabilities for
general purpose data processing. The micro-sequencer
controls external data processing resources by toggling control
signals.

In FPGA computing, this arrangement allows maximum
flexibility in the data domain. The widths of data words,
addressing modes and number of processing channels etc. can
be chosen by the designer without any restrictions as in general
purpose micro-processors.

Without data processing resources, conditional branches are
harder to be implemented and therefore are discouraged in the
ELMS, while loops using the built-in FOR loop support are
encouraged. On the other hand, because of the FOR loop
support in ELMS, a further separation of program and data
than the Harvard architecture becomes practical and feasible.

C. Predefined Iteration FOR Loop Support
Using loops in the program is a primary means of code

reuse. Supporting block-styled predefined iteration FOR loops
without using a conditional branch instruction is a unique
feature of the ELMS. Of course, the ELMS must still support
conditional branch instruction JMPIF since the FOR loops can
replace conditional branches in many but not all instances.

In advanced micro-processors, branch penalties [6][7]
become more serious as the pipeline becomes deeper and

TABLE IV
SILICON USAGE OF THE ELMS

Device
Price: (April 2007)

EP1C6Q240C6
$28

Logic Elements
(5980 total)

M4K memory
blocks (20 total)

Whole Sums03 FPGA 2486 (41%) 20 (100%)
Seq128
(ELMS + etc.)

212 (3.5%) 2 (10%)

ELMS1
(ELMS+
3 8bit-accumulators)

193 (3%) 2 (10%)

deeper. An attempt to solve the problem is to use branch
prediction with additional resource and there are good
algorithms in this area.

When a FOR loop with predefined iteration is programmed,
the execution route including where and how many times to
loop is determined in advance. There should be no branch
penalty at all. However, when using conditional branch to
conduct the loop, the originally known sequence becomes
unknown and the branch condition must be evaluated each
time the end of the loop is reached. With FOR loops available
at the machine code level, it helps to ease the branch penalty
problem.

In an FPGA, the clock speed difference between pipelined
and non-pipelined ROM is not very significant. In cases such
as in our example, a clock frequency as low as 50 MHz is
sufficient which makes non-pipelined structures preferable.
Hence the benefit of the FOR loops on reducing the branch
penalty is not very obvious. Nevertheless, the FOR loop is
still a convenient program instruction to achieve silicon
resource and code reuse.

In practice, indexes must be kept in loops to distinguish
different passes of the loops. In the ELMS, the pass counter
for the FOR loop can be viewed as an index. However, we
chose for the user to implement external user indexes rather
than supporting them inside the micro-sequencer. The pass
counter is in the program domain while user indexes belong to
the data domain. It is more convenient for the users to specify
the parameters of the index counters such as number of bits,
incremental difference, reset or preload features etc.

In our example, the number of iterations “cnt” is an
immediate value that comes with the FOR instruction.
However, there is no fundamental reason why this value can
not be stored in a user register. This way, FOR loops with a
variable number of iterations can be supported, which is very
useful in applications like matrix computation.

D. Software Issues
The operation of the ELMS is conducted by a pre-stored

program. Just as in micro-processor computing, the software
must be appropriately coded and compiled for given
computing tasks. Based on experience with micro-processor
computing, it is known that software engineering could
become a major effort in certain tasks.

In many cases complexity of software is only partially
necessary for the computing tasks and is partially artificial,
essentially due to complexity of the hardware or firmware.
Therefore, the best way to reduce software complexity is to
simplify the hardware or firmware design.

The architecture of the ELMS is directly reflected in its
instruction set. There are only a handful program flow control
instructions that are native to the ELMS. All the remaining
ones are user instructions that are application specific. Unlike
in micro-processors where the users write programs using an
existing instruction set, in an FPGA with the ELMS, the users
design the instruction set as well as program them into the
desired sequence.

For our practical design, we have used spread sheets as our
tools for keeping track of the instruction set design, program
coding, compiling as well as documenting. This way, the
effort of software design is controlled within a reasonable
fraction of the entire work.

VII. CONCLUSION
The firmware in the digitizer card for the Fermilab BLM

system has been commissioned and operates with specified
functions.

The de-ripple process described in this document can be a
useful noise elimination tool for systems with periodic noise
and non-periodic signals. The signals can be brief abrupt ones
or slow moving ones.

The ELMS provides an option of sequence control in an
FPGA with very low resource usage. It has been used for the
Fermilab BLM system with specified performance and a
flexible reprogramming ability.

The FOR loop support in machine code level in the ELMS
also provides some hints on fighting branch penalty problems
for advanced micro-processor development. Clearly, there is a
whole array of associated issues that must be studied in the
future.

REFERENCES
[1] C. Drennan, et. al., “Development of a new data acquisition system for

the Fermilab beam loss monitors,” in Nuclear Science Symposium
Conference Record, Date: 16-22 Oct. 2004, Pages: 1816 - 1819 Vol. 3.

[2] R. Lyons, Understanding Digital Signal Processing, 2nd ed. Upper
Saddle River, NJ: Prentice Hall, 2004.

[3] Cyclone FPGA Family Data Sheet, Altera Corp., San Jose, CA, 2003
[Online]. Available: http://www.altera.com/

[4] G. Hinton, et. al., “The Micro-architecture of the Pentium 4 Processor,”
in Intel Technology Journal, Vol. 5 Issue 1 (February 2001).

[5] J. Hilburn & P. Julich, Microcomputers/Microprocessors: Hardware,
Software and Applications, Englewood Cliffs, NJ: Prentice Hall, 1976.

[6] D. Comer, Essentials of Computer Architecture, Upper Saddle River,
NJ: Prentice Hall, 2005.

[7] Arvind et. al., “6.823 Computer System Architecture” MIT Open
Course Ware, [Online]. Available:
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-
Science/6-823Fall-2005/CourseHome/

