
Abstract— In the Fermilab Beam Loss Monitor System, inputs 
from ion chambers are integrated for a short period of time, 
digitized and processed to create the accelerator abort request 
signals.  The accelerator power supplies employing 3-phase 60Hz 
AC cause noise at various harmonics on our inputs which must be 
eliminated for monitoring purposes.  During accelerator ramping, 
both the sampling frequency and the amplitudes of the noise 
components change. As such, traditional digital filtering can 
partially reduce certain noise components but not all.  A non-
traditional algorithm was developed in our work to eliminate 
remaining ripples.  The sequencing in the FPGA firmware is 
conducted by a micro-sequencer core we developed: the Enclosed 
Loop Micro-Sequencer (ELMS).  The unique feature of the 
ELMS is that it supports the “FOR” loops with pre-defined 
iterations at the machine code level, which provides programming 
convenience and avoids many micro-complexities from the 
beginning.  
 

Index Terms—Digital Data Processing, Embedded System, 
Micro-processor, Micro-sequencer, FPGA, Reconfigurable 
Computing. 

I. INTRODUCTION 
HE new Fermilab Beam Loss Monitor (BLM) readout 
system [1] is designed to perform several tasks: to provide 

a flexible and reliable abort system to protect Tevatron 
magnets; to provide loss monitor data during normal 
operations of the Tevatron, Main Injector and Booster; and to 
provide detailed diagnostic loss histories when an abort 
happens.  Beam losses are detected using ion chambers. 

The signals from the ion chambers are integrated for a short 
period of time, typically 21 µs, and digitized to 16 bits. The 
digital data are used to construct fast, slow and very-slow 
sliding sums, which are a measure of the integrated loss over a 
variety of time scales up to 64k cycles.  The abort request 
signals for each channel are made in firmware by comparing 
these sums as well as the immediate measurement with 
thresholds.  The system abort signal is made by checking the 
number of channels and types of abort request signals. 

For the Main Injector BLM system, an integration sum for 
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each channel is accumulated. 
In addition to producing abort request signals, the sliding 

sums are also readout to monitor the beam loss.  However, the 
accelerator power supplies employing 3-phase 60Hz AC cause 
noise at various harmonics on our inputs which can be larger 
than the beam loss data in some channels.  Both analog 
methods, e.g., appropriate grounding scheme for the input 
cables and digital methods are employed for noise reduction.  
A special challenge for the digital processing in accelerator 
systems is ramping, i.e., accelerating particles from lower 
energy to higher energy.  During accelerator ramping, both the 
sampling frequency and the amplitudes of the noise 
components change. A traditional digital filtering process was 
implemented and it partially reduced certain noise components 
but not all.  A non-traditional algorithm was developed in our 
work to eliminate the remaining ripples.  

An FPGA firmware core for our sequencing control, called 
the Enclosed Loop Micro-Sequencer (ELMS) is also described 
in this document.  The primary difference between the ELMS 
and the regular micro-processor/micro-sequencer is that 
“FOR” loops with pre-defined iterations at the machine code 
level are supported in the ELMS making it self-sufficient to 
run multi-layer nested-loop programs. 

II. THE DIGITIZER CARD 
A Digitizer Card (DC) integrates, digitizes and processes 4 

channels of ion channel inputs.  The partial block diagram for 
the FPGA calculating the sliding sums is shown in Fig. 1. 

 
Each input from the ion chamber is integrated by two 

integrators alternately in ping-pong fashion.  The output 
voltages of the integrators reflect the charges due to beam loss 
and are then digitized by an ADC device (AD7654AST) at 
about 21 µs per sample and input into an FPGA (with project 
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Fig. 1.  The partial block diagram of the Digitizer Card 
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name Sums03) for digital processing. 
A total of 16 sliding sums are to be kept in the FPGA.  (In 

addition to the fast, slow and very slow sliding sums, the 
immediate measurement is implemented as a sliding sum with 
sum length=1).  They are compared with corresponding 
thresholds pre-loaded into the FPGA to produce 16 abort 
request signals indicating the channel and type of the abort 
request.  The FPGA also produces several other “de-rippled” 
values for monitoring purposes which will be described in 
detail in later sections.  If all sums were kept using 
accumulators, the FPGA would easily consume several 
thousand logic elements, out of 5980 logic elements in the 
Altera Cyclone EP1C6 device we use. 

On the other hand, during a 21 µs period, there are more 
than 1000 clock cycles at 50 MHz inside the FPGA.  Clearly it 
is more economical to calculate 16 sliding sums and to 
perform other tasks sequentially using one set of data 
processing resources.  The sequence is conducted by the 
“Seq128” block with an ELMS block inside. 

For the Main Injector BLM system, integrations must be 
computed.  In order to compute the integrations properly, the 
pedestal for each channel is first calculated.  At the beginning 
of each beam cycle when there is no beam, about 752 readings 
for each channel are accumulated to measure the pedestal. 

For the Main Injector the very-slow sliding sum of each 
channel has a sum length of about 64 and now represents a 
smoothed version of the input.  For each measurement, the 
pedestal is subtracted from the very-slow sliding sum with an 
appropriate scaling and the difference can be optionally 
compared with a user-defined value called the “squelch level”.  
If the difference is bigger than the squelch level, the input 
signal is considered bigger than noise and it is added into the 
integration sum.  Otherwise, the input signal is considered 
below the noise level and the integration sum is kept 
unchanged. 

III. THE DE-RIPPLE PROCESS 
In addition to calculating the 16 sliding sums and generating 

corresponding abort request signals, the Digitizer Card also 
outputs various values for monitoring of the beam loss. 

The signal cables in the MI tunnel pick up noise generated 
by equipment powered by 3-phase 60Hz AC.  It contains 
primarily harmonics of 60Hz, 180Hz and multiples of 360Hz.  
The noise level is higher than the desired signal and the noise 
peaks exist at both higher and lower frequencies compared to 
the signal spectrum.  A typical set of raw measurement data 
and their spectrum are shown in Fig. 2 and Fig. 3. 

A natural approach of eliminating noise is filtering. In fact, 
calculating sliding sums can be viewed as a digital filtering 
process.  The fast sliding sum over a length of 128 shown in 
Fig. 2 has reduced the noise level from about 10 ADC counts 
in the raw data down to about 2 ADC counts.  Some beam loss 
can be seen in the fast sliding sum plot. 

 

However, the sliding sum is a low pass filter with a sinc(x) 
function shaped frequency response.  The zeros of the sinc(x) 
are very sharp and it is hard to align them with the noise peaks, 
especially when the sampling frequency is not an integer 
multiple of 60Hz and when the accelerator ramps which varies 
the sampling frequency.  Also the side lobes of the sinc(x) are 
not low enough.  Therefore, the plot of the fast sliding sum still 
contains glitches along with unfiltered 60Hz and 180Hz 
components. 

The de-ripple process further eliminates remaining noise 
components so that smaller beam losses become visible.  The 
process takes the following steps: 

1. Calculating the Cascaded Integrator-Comb (CIC) sums. 
2. Waveform extraction, storage and validation. 
3. Waveform subtraction. 

A. Calculating the Cascaded Integrator-Comb (CIC) Sums 
The cascaded integrator-comb (CIC) digital filter [2] of 

order N contains N cascaded stages.  Each stage is a moving 
average filter which is a CIC filter of order 1.  The sliding sum 
can be viewed as a CIC filter of order 1 with un-normalized 
gain.  The CIC sums implemented in the Sums03 FPGA 
firmware are CIC filters of order 2, which can be viewed as the 
sliding sum of the sliding sum of the raw data. 

The frequency response shape of the CIC sums is sinc2(x) in 
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Fig. 3.  The frequency spectrum of raw measurement data   
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Fig. 2.  The raw measurement data and the fast sliding sum  



which the zeros become the second order ones that provide 
deeper attenuation to the noise peaks even though the peaks 
are not precisely aligned with the zeros.  The side lobes also 
become lower.  In Fig. 4, the sliding sums (FS) and the CIC 
sums of a set of typical measurement data are plotted (with 
appropriate scales and an artificial offset).  It can be seen that 
the CIC sums are significantly smoother than the sliding sum. 

 
The CIC sum y[n] and sliding sum s[m] of input sequence 

x[j] with sum length K in our work are defined as: 
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The sum length K for the CIC sums in our firmware is 
chosen to be 124-128, which brings the first zero to 360Hz.  It 
can be reasonably assumed that the CIC sums are band limited 
to 360Hz. 

In the practical firmware, the accumulations above are 
implemented recursively as shown in Fig. 5. 

 
Both left and right diagrams in Fig. 5 are valid CIC sum 

implementations and the resource usages are comparable. 
However in our application, we would like avoid adding a 
separate storage for s[n], given that a record of up to 64K raw 
measurement points x[j] are available.  The formula for the 
CIC sum is altered as shown in the right diagram, which 
contains two recursive accumulations: 
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This way, the only additional storage is the intermediate 
value u[n], which takes only one memory space. This way, no 
additional long record of intermediate values needs to be 
stored. 

B. Waveform Extraction, Storage and Validation 
The “de-ripple” process involves simply subtracting the 

noise waveform from the current CIC sum.  The waveform is a 
record of previous CIC sums of one period (1/60Hz = 16.7ms) 
long which are believed not to be contaminated by abrupt 
beam loss (although a DC or very slow beam loss is allowed).  
In the BLM digitizer FPGA firmware, the calculated CIC sums 
are directly stored as the waveform data. 

Since the CIC sums are band limited to about 360Hz, it is 
possible to decimate the y[n] sequence to save storage space 
without losing information.  The decimation counter is a 24-bit 
accumulator that increases by 22336 for every input point or 
about every 21µs.  The top 7 bits are used as address to the 
waveform WF storage memories.  This way, 128 CIC sum 
points are stored for the time period of 1/60Hz.  The 
separation of two decimated points is 5 or 6 raw data points.  
The effects of non-uniform decimation are negligible for our 
application, although interpolation algorithms are available to 
reduce the effects.  The block diagram of the de-ripple 
processor is shown in Fig. 6. 

 
The waveform storage memories are split into two pages for 

each channel.  The CIC sums are written into the page as the 
tentative waveform which must be validated through the 
period.  Meanwhile, for each channel, a sum of the waveform 
is accumulated to calculate the waveform mean value, WM.  
After accumulating 128 points for the entire period, the sum is 
simply the waveform mean scaled by a factor of 128, or 7 bits.  
This is the reason for choosing the decimation scheme 
mentioned above. 

Two CIC sums are calculated, the current one y[n] and the 
one a period before y[n-L], where L is the length 
corresponding to a period which is about 752.  During the 
period, the absolute value of the difference of the two CIC 
sums is constantly compared with a parameter MaxDY.  If the 
difference between the two CIC sums is bigger than the 
predefined limit MaxDY, there may be an abrupt beam loss in 
the period.  The waveform then is considered invalid.  If the 
differences in the entire period are within the predefined limit, 
the waveform becomes valid.  

At the end of each period, if the waveform is valid, a 1-bit 
counter PG flips, which swaps the tentative waveform page to 
the usable waveform page.  The new tentative waveform is 

Fig. 4.  The sliding sum and the CIC sum  
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Fig. 5.  The CIC sum calculation 



stored in another page until it becomes a valid waveform at the 
end of another period. 

At the initial time after reset, the firmware logic forces the 
value (WF-WM)=0.  After the waveform of a period becomes 
valid, it outputs the latest valid one. 

C. Waveform Subtraction 
Once the waveform becomes valid, waveform subtraction 

can be performed to get the de-rippled sum DR.  The stored 
waveform WF contains a DC component, which represents the 
slow beam loss during the period when the waveform was 
recorded.  To assure the slow beam loss at current time is 
correctly preserved, the DC balanced waveform (WF-WM) is 
used in the subtraction.  As mentioned above, the WM is the 
waveform mean accumulated during the waveform recording 
period and therefore the mean of (WF-WM) over the same 
period is zero or DC balanced.  Results of the full de-ripple 
process is shown in Fig. 7. 

 
In order to see the curves clearly, each curve is added with 

an offset.  The second curve is the CIC sum with a sum length 
of 128.  For reference, the sliding sum FS with the same sum 
length is also shown as the first trace.  The waveform WF in 
general takes 3 periods to become valid.  In the first 3 periods, 
WF and WM are forced to be 0.  The de-rippled output DR, 
the bottom curve, first follows the CIC sum for 3 periods since 
WF is invalid.  Then it becomes a smooth curve with 60Hz and 
180Hz ripples canceled.  It can be seen that in the DR sum, 
both abrupt and slow beam losses become visible. 

IV. THE ENCLOSED LOOP MICRO-SEQUENCER 

A. Sequence Control Options 
As mentioned earlier the functions in the Sum03 FPGA are 

performed sequentially.  Sequence control is normally 
implemented using either finite state machines (FSM) or 
embedded micro-processor cores.  When an input data item is 
to be fed through a fast and very simple process, typically 
using a few clock cycles, FSM is a suitable means of sequence 
control.  FSM also responds to external conditions promptly 
and accurately.  However, the sequence or program in the 
FSM is not easy to change and debug, especially when 
irregularities exist in the sequence.  Also, the state machines 
occupy logic elements no matter how rarely they are used.  So 
it is not economical to use FSM to implement the occasionally-
used sequences such as initialization, communication channel 

establishment, etc. 
Embedded microprocessor is another option of sequence 

control.  The drawback of a microprocessor is the large 
resource usage.  The micro-processor is a better choice only if 
a data item is to be processed with a very complicated 
program, typically using thousands of clock cycles. 

When a data item is to be processed with a medium length 
program, e.g., using a few hundred clock cycles, a micro-
sequencer becomes a better option.  We have developed a 
micro-sequencer in our FPGA called the Enclosed Loop 
Micro-Sequencer (ELMS).  The primary difference between 
the ELMS and regular micro-processor/micro-sequencer is that 
the ELMS supports “FOR” loops with predefined iterations at 
the machine code level and is self-sufficient to run multi-layer 
nested-loop programs. 

B. Description 
A detailed block diagram of the ELMS is shown in Fig 8.  

The program is stored in a 36-bit x 128-word ROM in our 
example.  Clearly the instruction width and memory depth can 
be flexibly chosen for different applications as necessary.  
Also, ROM’s in FPGA are typically implemented with dual-
port random access memories (RAM’s), which allows the 
users to overwrite its contents so that new programs can be 
loaded.  However, if the program is not to be changed during 
operation, a block memory organized as a ROM with the 
program pre-stored is more convenient. 

 
Both unconditional and conditional branches are supported 

as in regular micro-processors.  We have used non-pipelined 
branch logic in our example for simplicity. 

The Loop & Return Registers (LRR) along with a 128-word 
stack are the primary elements designed to support the 
constant iteration “FOR” loops. 

Some ELMS instructions are shown in Table I. 

Fig. 7.  The de-ripple results 
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The ELMS instructions are 36-bit words.  When any of the 
bits 32-35 is set, the word represents a program control 
instruction.  Otherwise, it is treated as a user instruction.  In 
the ELMS, the only built-in instructions are the program 
control instructions.  All other instructions can be freely 
defined by the users. 

C. The Branch Instructions 
The unconditional branch instruction JMP is implemented 

as in typical micro-processors.  When bit 35 is set, bit field 
desA (only the lower 7 bits are used in our example) is 
selected as the PC for next clock cycle. 

The conditional branch instruction JMPIF is signified when 
bit 32 is set.  An input line CondJMP is supplied from external 
user logic as the branch condition, i.e., the PC jumps to desA 
only when CondJMP is high.  The branch condition in the 
ELMS is treated as a result from the external data processing 
resources.  It is the users’ responsibility to generate this signal 
and assure that it is valid when reaching the conditional branch 
instruction.  This design arrangement allows us to avoid using 
an ALU in the sequencer. 

In the non-pipelined design, the branch logic is the most 
latency critical part.  When a JMP or JMPIF instruction is 
present at the output of the ROM, the signals must flow 
through several layers of multiplexers, arriving at the address 
registers of the ROM with sufficient setup time.  We have been 
able to compile the non-pipelined design in an Altera Cyclone 
FPGA device EP1C6Q240C6 [3] with a 153 MHz maximum 
operating frequency.   

To increase the operating frequency further, a pipelined 
design can be used, i.e., assigning registers on both input and 
output ports of the ROM.  We have compiled a pipelined 
version in the same device with a 250 MHz maximum 
operating frequency.  However, a pipeline bubble (no-op 
instruction) or out-of-order time slot must be added after the 
JMP or JMPIF instructions. 

In our application, the clock inside the FPGA is 50 MHz.  
That’s why we chose a non-pipelined design in our example.  

The branch instructions are to be used only when it is 
necessary.   

D. The FOR Instruction 
Supporting FOR loops with predefined iterations at machine 

code level is a special feature of the ELMS. 
When bit 33 is set, the instruction starts a FOR loop in 

which the bit fields BckA, EndA and cnt are pushed into the 
corresponding LRR/stack.  The PC is incremented until 
reaching EndA, and then it is set back to BckA.  This 
continues for (cnt+1) passes.  Then the stack is popped on the 

last pass of the loop. 
A program segment with a FOR loop may look like the 

following: 
 FOR   BckA1   EndA1    5 
 Initialization Processes 
BckA1 
 Repeating Processes 
EndA1 
After the FOR instruction, the instructions before PC = 

BckA1 are executed once, essentially serving as initialization.  
Then the instructions between PC = BckA1 and EndA1 
(inclusive) are executed (cnt+1) or 6 times in this example.  
Note that there is no conditional branch instruction at EndA1.  
The ELMS conducts the loop sequence by itself. 

Another interesting point is that the LRR + stack structure 
appears like a Branch Target Buffer (BTB) in advanced micro-
processors [4].  Indeed, the LRR + stack stores information of 
the targets to be branched to.  However, the PC jumps in 
ELMS are pre-defined by the FOR instruction and are not 
based on predictions.  Thus the sequencing performance of the 
ELMS is deterministic rather than statistical.  

E. The CALL and RTN Instructions 
The CALL instruction is implemented as a combination of 

the FOR and JMP instructions with cnt automatically set equal 
to 1.  At the CALL instruction, the PC jumps to desA while 
BckA and EndA are pushed into the LRR/stack.  When PC 
reaches EndA or when a RTN instruction is seen, the PC 
jumps back to BckA and the stack is popped.  Note that in 
addition to a regular return instruction, the return point from 
the subroutine is also pre-defined to be EndA, which allows an 
alternative means of subroutine return that provides extra 
convenience.  

A program segment with CALL/RTN instructions may look 
like the following: 

 CALL   BckA1   EndA1   DesA1 
BckA1 
 Processes after Subroutine Return 
DesA1 
 Subroutine  
EndA1 RTN (optional) 
After the CALL instruction, the PC jumps to DesA1 to 

execute the subroutine.  Once PC reaches EndA1, it returns to 
BckA1.  The instruction at EndA1 does not need to be RTN.  
Therefore any program segment can be called as a subroutine. 

The RTN instruction is provided primarily for possible early 
returns in the subroutines.  The RTN instruction may also be 
used when early breaks are needed in the FOR loops. 

F. Nesting Loops 
Multi-layer FOR or CALL loops can be nested.  When an 

inner layer starts, the parameters of the unfinished outer loop 
are pushed into the stack, which allows the outer loop to 
continue after the inner loop finishes. 

Note that in the FOR loops, inner loops can be nested not 
only in the repeating processes, but also in the initialization 
processes.  This design arrangement provides convenience for 
the programmers when subroutine calls or FOR loops are 

TABLE I
PROGRAM CONTROL INSTRUCTIONS 

35 34 33 32 31:24 23:16 15:8 7:0 Notes 
JMP 1 0 0 0    desA Unconditional go to desA 
JMPIF 0 0 0 1 desA Conditional go to desA 
FOR 0 0 1 0  BckA EndA cnt Repeat cnt+1 times form BckA to EndA
CALL 1 0 1 0 BckA EndA desA Go to desA, upon PC=EndA, go BckA 
RTN 0 1 0 0     Return, pop stack 

0 0 0 0 X X X X User instructions 



needed in the initialization, such as presetting an array. 
Up to 128 layers of loops can be nested.  It is the users’ 

responsibility not to nest more than 128 layers of loops.  This 
should be sufficient for most applications.  For example, if 64 
layers of FOR loops, each iterating 2 times, are nested 
together, it will take the sequencer, operating at 250 MHz, 
more than 2000 years to complete. 

G. The User Instructions 
When the bits 32-35 of the instruction word are all 0, the 

word represents a user instruction.  The users have maximum 
flexibility to define their own instruction sets based on the 
application.  We present the instruction set we used for the 
Fermilab BLM system as an example shown here in Table II. 

 
A user instruction contains four instruction fields, 4 bits 

each: SEQA, SEQB, SEQC and SEQDQQ; and two 
address/data fields: ADH and ADL.  Each instruction field is 
decoded into up to 15 control signals with names shown in 

Table II.  The SEQDQQ are delayed by a pipeline step before 
being decoded.  The control signals generated from SEQDQQ 
are essentially register enable signals for reading out contents 
from the Parameter RAM and the Sum Keeping RAM that are 
registered on input port.  The ADH and ADL fields are used to 
provide addresses for memory access or to specify initial 
values for some registers. 

Sometimes, several control signals must be turned on 
simultaneously.  While defining the instruction set, signals that 
might be turned on simultaneously are carefully assigned to 
different columns in Table II. 

H. Sample Codes 
The ELMS codes for calculating 16 sliding sums in our 

application are shown in Table III. 
After reset, the PC starts from 00.  The sequencer runs into 

a dead loop at PC = 03.  The unconditional instruction, JMP to 
03 is “executed” every clock cycle.  However, there is no bit 
flipping at all.  The sequencer and the logic it controls are 
effectively in a sleep mode that consumes no dynamic power. 

When an external “do sums” signal arrives, the “RUNat04” 
signal in Fig. 8 is turned on for a clock cycle that forces the PC 
to become 04.  The ELMS then goes through the sequence of 
calculating the sliding sums.  The FOR instruction at PC = 07 
sets the outer loop for the 4 types of sliding sums (immediate, 
fast, slow and very-slow).  Then the FOR instruction at PC = 
0A sets the inner loop for 4 input channels.  The type and 
channel of the sliding sums are indexed by two counters that 
are initialized and incremented by the SetType, IncType, 
SetCh and IncCh instructions, respectively. 

The “compiler” we used is a Microsoft Excel spread sheet.  
The search and index functions are used to find labels and 
instructions.  Each row is composed as a 36-bit integer in the 
column “code”.  The columns “PC” and “code” are copied to 
another worksheet, which is then saved as a text file.  The text 

TABLE II 
THE USER INSTRUCTION SET USED IN FERMILAB BLM SYSTEM 

Bit 35:32 31:28 27:24 23:20 19:16 15:8 7:0 
0000 SEQA SEQB SEQC SEQDQQ ADH ADL 

Branch 
Instruction SEQA[] SEQB[] SEQC[] SEQDQQ[] 

0
1JMPIF IncCirBufPT SetType SetCh EnQLen 
2FOR ChkJMPcond IncType IncCh EnQCH 
3 SelSumLengths SubQLen SelQWF   
4RTN EnSumsMemA SelCurrAddr ShiftM1 LdModeSelX 
5 SumsMemCS SumsMemOE SumsMemWE LdDAC_OutX
6 WRsumXa SelQSqch EnQTailSqch   
7 WRsumXb   Sel64HI LdSumMQH 
8JMP   SubSumD SelInitValue LdSumMQ 
9 EnSumD sloadSumD SelSumMQQ EnQSqch 

10CALL LatchIntg   SelSumMQQShift EnQPedL 
11  WRsumX SelIntgX SelQCH EnQPedH 
12BRK ChkSumsOT ChkIntgOT SelTailSqch   
13  WRwaveform   SelPed   
14  WRconstX SelConstH OnLatchX   
15    WrDACs EndCycle   

TABLE III 
SAMPLE CODES OF THE ELMS 

PC Label 
BR 
Instr. BckA EndA cnt/desA SEQA SEQB SEQC SEQDQQ ADH ADL code Notes

00 000000000  
01 000000000  
02 000000000  
03 DeadBk3 8JMP      DeadBk3 03          800000003 dead loop after reset 
04 000000000 do sums begins at 0x04 
05 1 IncCirBufPT         010000000  
06 1SetType     0  001000000 *** sliding sums begin ***
07 2FOR TypeBgn1 08 TypeEnd1 173 3 200081703
08 TypeBgn1 3 SelSumLengths 1 EnQLen  40 030010040 load sum length of the type
09 1 SetCh    0 000100000  
0A 2FOR ChBgn1 0B ChEnd1 163 3 2000B1603  
0B ChBgn1                2 EnQCH  48 000020048 current hit 
0C 8 LdSumMQ 80  000088000 stored sum 
0D 4 EnSumsMemA 4 LdModeSelX 68 040040068  
0E 5 SumsMemCS 5SumsMemOE 055000000  
0F 5 SumsMemCS 5SumsMemOE 6 EnQTailSqch     055600000 load tail 
10 9 EnSumD 9sloadSumD 9 SelSumMQQ     099900000 old sum 
11 9 EnSumD   11SelQCH     090B00000 +current value 
12 9 EnSumD 8SubSumD 12SelTailSqch     098C00000 -tail = new sum 
13 000000000  
14 11WRsumX       80  0B0008000  
15 12ChkSumsOT         0C0000000  
16 ChEnd1              2 IncCh     000200000  
17 TypeEnd1           2 IncType       002000000 *** sliding sums fin *** 



file can be directly used as a “memory initialization file” that 
specifies the ROM contents in the FPGA. 

V. FPGA IMPLEMENTATIONS 
The firmware with project name Sums03 that calculates the 

sliding sums, generates abort request signals and performs de-
ripple functions has been implemented in a low cost FPGA 
device, EP1C6Q240C6.  The ELMS has been used in the 
block Seq128 in the FPGA for sequence control.  For 
evaluating the idea of the ELMS, a bare ELMS circuit plus 
three 8-bit accumulators has also been compiled and simulated 
in a test project ELMS1 using the same FPGA device.  
Compiled results are shown in Table IV. 

 
It can be seen that the resource usage of the ELMS is very 

small, leaving most portions of the FPGA for data processing 
functions defined by users.  As a result of using ELMS, a 
significant portion of the resources for calculating the sliding 
sums and the integration sums are reused multiple times for 
each measurement.  Without resource reusing, the whole 
function would not fit our FPGA. 

It is possible to find off-the-shelf micro-processor/micro-
sequencer IP with comparable resource usage.  However, the 
supporting of predefined FOR loops at machine code level is a 
special and convenient feature of the ELMS.  In fact, because 
of its simplicity, the ELMS itself can become an off-the-shelf 
solution for future projects.  On the other hand, it is not 
difficult to add the FOR loop support to a future version of an 
existing IP. 

Again because of the simplicity, it is very easy to compile 
the ELMS with a high operating frequency.  The non-pipelined 
and pipelined versions of the ELMS1 project are compiled 
with 153 MHz and 250 MHz maximum operating frequencies, 
respectively, where 250MHz is the upper operating limit of the 
M4K memory block in the device.  The project Sums03 does 
not need a high operating frequency since its internal clock is 
only 50 MHz.  The Sums03 project is compiled with a 
maximum operating frequency of 61 MHz. 

VI. DISCUSSION 
Several design considerations of the firmware are to be 

discussed in this section. 

A. Several Remarks about the De-ripple Process 
Traditional digital filtering performs well on eliminating 

high frequency noise.  In our firmware, we used a CIC filter of 
order 2, i.e., the CIC sums to eliminate noise above 360Hz.  
To eliminate low frequency components, however, traditional 
digital filter needs a sufficiently long record, usually many 
(1/60Hz) periods, of measurement data.  In our system, there 
are not very many periods after a reset and the amplitudes and 
phases of the 60, 120 and 180 Hz noise components can be 
different over a few (1/60Hz) periods before and after the 
accelerator ramping. 

Therefore, a noise waveform subtraction approach is chosen 
for our de-ripple process in which a period of noise waveform 
is stored for subtraction from the later measurements.  Since 
the noise components may change over a few periods, the 
waveform is updated constantly.  To assure the waveform is 
free of abrupt beam loss, it is being validated using a periodic 
condition (assuming the abrupt beam loss is not periodic) 
while it is recorded.  Finally, the effect of DC beam loss in the 
waveform is canceled by subtraction of the waveform mean 
from the waveform. 

B. The Sequencer without Data Processing Resources 
In history, there are computers employing the “Harvard” 

architecture [5] in which storages of program and data are 
physically separated.  Most of today’s general purpose micro-
processors use the “Princeton” architecture in which the 
program and data are stored in the same external memory.  
However, inside the micro-processor, the program and data are 
usually stored in separate caches and at this level it is the 
Harvard structure again. 

In the ELMS, the data and program are further separated 
beyond the Harvard architecture.  A micro-sequencer is not a 
CPU since the sequencer itself does not have capabilities for 
general purpose data processing.  The micro-sequencer 
controls external data processing resources by toggling control 
signals. 

In FPGA computing, this arrangement allows maximum 
flexibility in the data domain.  The widths of data words, 
addressing modes and number of processing channels etc. can 
be chosen by the designer without any restrictions as in general 
purpose micro-processors. 

Without data processing resources, conditional branches are 
harder to be implemented and therefore are discouraged in the 
ELMS, while loops using the built-in FOR loop support are 
encouraged.  On the other hand, because of the FOR loop 
support in ELMS, a further separation of program and data 
than the Harvard architecture becomes practical and feasible. 

C. Predefined Iteration FOR Loop Support 
Using loops in the program is a primary means of code 

reuse.  Supporting block-styled predefined iteration FOR loops 
without using a conditional branch instruction is a unique 
feature of the ELMS.  Of course, the ELMS must still support 
conditional branch instruction JMPIF since the FOR loops can 
replace conditional branches in many but not all instances. 

In advanced micro-processors, branch penalties [6][7] 
become more serious as the pipeline becomes deeper and 

TABLE IV 
SILICON USAGE OF THE ELMS 

Device 
Price: (April 2007) 

EP1C6Q240C6 
$28 

Logic Elements 
(5980 total) 

M4K memory 
blocks (20 total) 

Whole Sums03 FPGA 2486 (41%) 20 (100%) 
Seq128  
(ELMS + etc.) 

212 (3.5%) 2 (10%) 

ELMS1 
(ELMS+ 
3 8bit-accumulators) 

193 (3%) 2 (10%) 



deeper.  An attempt to solve the problem is to use branch 
prediction with additional resource and there are good 
algorithms in this area.  

When a FOR loop with predefined iteration is programmed, 
the execution route including where and how many times to 
loop is determined in advance.  There should be no branch 
penalty at all.  However, when using conditional branch to 
conduct the loop, the originally known sequence becomes 
unknown and the branch condition must be evaluated each 
time the end of the loop is reached.  With FOR loops available 
at the machine code level, it helps to ease the branch penalty 
problem. 

In an FPGA, the clock speed difference between pipelined 
and non-pipelined ROM is not very significant.  In cases such 
as in our example, a clock frequency as low as 50 MHz is 
sufficient which makes non-pipelined structures preferable.  
Hence the benefit of the FOR loops on reducing the branch 
penalty is not very obvious.  Nevertheless, the FOR loop is 
still a convenient program instruction to achieve silicon 
resource and code reuse. 

In practice, indexes must be kept in loops to distinguish 
different passes of the loops.  In the ELMS, the pass counter 
for the FOR loop can be viewed as an index.  However, we 
chose for the user to implement external user indexes rather 
than supporting them inside the micro-sequencer.  The pass 
counter is in the program domain while user indexes belong to 
the data domain.  It is more convenient for the users to specify 
the parameters of the index counters such as number of bits, 
incremental difference, reset or preload features etc. 

In our example, the number of iterations “cnt” is an 
immediate value that comes with the FOR instruction.  
However, there is no fundamental reason why this value can 
not be stored in a user register.  This way, FOR loops with a 
variable number of iterations can be supported, which is very 
useful in applications like matrix computation. 

D. Software Issues 
The operation of the ELMS is conducted by a pre-stored 

program.  Just as in micro-processor computing, the software 
must be appropriately coded and compiled for given 
computing tasks.  Based on experience with micro-processor 
computing, it is known that software engineering could 
become a major effort in certain tasks. 

In many cases complexity of software is only partially 
necessary for the computing tasks and is partially artificial, 
essentially due to complexity of the hardware or firmware.  
Therefore, the best way to reduce software complexity is to 
simplify the hardware or firmware design. 

The architecture of the ELMS is directly reflected in its 
instruction set.  There are only a handful program flow control 
instructions that are native to the ELMS.  All the remaining 
ones are user instructions that are application specific.  Unlike 
in micro-processors where the users write programs using an 
existing instruction set, in an FPGA with the ELMS, the users 
design the instruction set as well as program them into the 
desired sequence. 

For our practical design, we have used spread sheets as our 
tools for keeping track of the instruction set design, program 
coding, compiling as well as documenting.  This way, the 
effort of software design is controlled within a reasonable 
fraction of the entire work. 

VII. CONCLUSION 
The firmware in the digitizer card for the Fermilab BLM 

system has been commissioned and operates with specified 
functions. 

The de-ripple process described in this document can be a 
useful noise elimination tool for systems with periodic noise 
and non-periodic signals.  The signals can be brief abrupt ones 
or slow moving ones. 

The ELMS provides an option of sequence control in an 
FPGA with very low resource usage.  It has been used for the 
Fermilab BLM system with specified performance and a 
flexible reprogramming ability. 

The FOR loop support in machine code level in the ELMS 
also provides some hints on fighting branch penalty problems 
for advanced micro-processor development.  Clearly, there is a 
whole array of associated issues that must be studied in the 
future. 
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