Real-Time Measurement of Material Elastic Properties in a High Gamma Irradiation Environment

PDF Version Also Available for Download.

Description

This paper describes the first noncontact elastic vibration measurements of an object in a high gamma radiation field. Using a laser-coupled resonant ultrasound technique, the vibration modes of an Inconel hollow capped cylinder were measured as the gamma radiation field was increased to 104 Gy/h. This measurement technique allowed shifts in the resonant frequency of the sample’s vibration modes to be tracked over a 170-h period. The vibration mode frequencies changed in a manner consistent with the temperature dependence of the elastic stiffness coefficients of the material. These results demonstrate the efficacy of the laser approach for real-time resonant ultrasound ... continued below

Creation Information

Telschow, Ken; Schley, Rob & Cottle, Dave May 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper describes the first noncontact elastic vibration measurements of an object in a high gamma radiation field. Using a laser-coupled resonant ultrasound technique, the vibration modes of an Inconel hollow capped cylinder were measured as the gamma radiation field was increased to 104 Gy/h. This measurement technique allowed shifts in the resonant frequency of the sample’s vibration modes to be tracked over a 170-h period. The vibration mode frequencies changed in a manner consistent with the temperature dependence of the elastic stiffness coefficients of the material. These results demonstrate the efficacy of the laser approach for real-time resonant ultrasound measurements in this severely hostile nuclear environment.

Source

  • 5th International Conference on NDE in Relation to Strutural Integrity for Nuclear & Pressurized Com,San Diego, CA,05/10/2006,05/12/2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-05-00979
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 912468
  • Archival Resource Key: ark:/67531/metadc881716

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 7, 2016, 4:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Telschow, Ken; Schley, Rob & Cottle, Dave. Real-Time Measurement of Material Elastic Properties in a High Gamma Irradiation Environment, article, May 1, 2006; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc881716/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.