Planned Use of Pulsed Crab Cavities for Short X-Ray Pulse Generation at the Advanced Photon Source

PDF Version Also Available for Download.

Description

Recently, we have explored application to the Advanced Photon Source (APS) of Zholents'[1] crab cavity scheme for production of short x-ray pulses. We assumed use of superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made [2] for a pulsed system using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. ... continued below

Physical Description

3 pages

Creation Information

Borland, Michael; Carwardine, J.; Chae, Y.; Emery, L.; Den Hartog, Patric; Harkay, K.C. et al. November 6, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recently, we have explored application to the Advanced Photon Source (APS) of Zholents'[1] crab cavity scheme for production of short x-ray pulses. We assumed use of superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made [2] for a pulsed system using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. This paper describes the motivation for the pulsed system and gives an overview of the planned implementation and issues. Among these are overall configuration options and constraints, cavity design options, frequency choice, cavity design challenges, tolerances, instabilities, and diagnostics plans.

Physical Description

3 pages

Source

  • Journal Name: Conf.Proc.C070625:1127,2007; Conference: Prepared for Particle Accelerator Conference (PAC 07), Albuquerque, New Mexico, 25-29 Jun 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-12964
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 919452
  • Archival Resource Key: ark:/67531/metadc881708

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 6, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 30, 2016, 4:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Borland, Michael; Carwardine, J.; Chae, Y.; Emery, L.; Den Hartog, Patric; Harkay, K.C. et al. Planned Use of Pulsed Crab Cavities for Short X-Ray Pulse Generation at the Advanced Photon Source, article, November 6, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc881708/: accessed December 10, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.