Recent Physics Results from NSTX

PDF Version Also Available for Download.

Description

The National Spherical Torus Experiment (NSTX) has made considerable progress in advancing the scientific understanding of high performance long-pulse plasmas needed for ITER and future low-aspect-ratio Spherical Torus (ST) devices. Plasma durations up to 1.6s (5 current redistribution times) have been achieved at plasma currents of 0.7 MA with non-inductive current fractions above 65% while achieving {beta}{sub T} and {beta}{sub N} values of 16% and 5.7 (%mT/MA), respectively. Newly available Motional Stark Effect data has allowed systematic study and validation of current drive sources and improved the understanding of ''hybrid''-like scenarios. In MHD research, six mid-plane ex-vessel radial field coils ... continued below

Physical Description

PDF-file: 14 pages; size: 1.5 Mbytes

Creation Information

Menard, J E; Bell, M G; Bell, R E; Bialek, J M; Boedo, J A; Bush, C E et al. October 5, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The National Spherical Torus Experiment (NSTX) has made considerable progress in advancing the scientific understanding of high performance long-pulse plasmas needed for ITER and future low-aspect-ratio Spherical Torus (ST) devices. Plasma durations up to 1.6s (5 current redistribution times) have been achieved at plasma currents of 0.7 MA with non-inductive current fractions above 65% while achieving {beta}{sub T} and {beta}{sub N} values of 16% and 5.7 (%mT/MA), respectively. Newly available Motional Stark Effect data has allowed systematic study and validation of current drive sources and improved the understanding of ''hybrid''-like scenarios. In MHD research, six mid-plane ex-vessel radial field coils have been utilized to infer and correct intrinsic error fields, provide rotation control, and actively stabilize the n=1 resistive wall mode at ITER-relevant low plasma rotation values. In transport and turbulence, the low aspect ratio and wide range of achievable {beta} in NSTX provide unique data for confinement scaling studies. A new high-k scattering diagnostic is investigating turbulent density fluctuations with wavenumbers extending from ion to electron gyro-scales. In the area of energetic particle research, cyclic neutron rate drops have been associated with the destabilization of multiple large Toroidal Alfven Eigenmodes (TAEs) similar to the ''sea-of-TAE'' modes predicted for ITER. Three wave coupling processes between energetic particle modes and TAEs have also been observed for the first time. In boundary physics, advanced shape control has been utilized to study the role of magnetic balance in H-mode access and ELM stability. Peak divertor heat flux has been reduced by a factor of 5 using an H-mode compatible radiative divertor, and Lithium conditioning has demonstrated particle pumping and improved thermal confinement. Finally, non-solenoidal plasma start-up research is particularly important for the ST, and Coaxial Helicity Injection has now produced 160kA plasma currents on closed magnetic flux surfaces.

Physical Description

PDF-file: 14 pages; size: 1.5 Mbytes

Source

  • Presented at: 21st IAEA Fusion Energy Conference, Chengdu, China, Oct 16 - Oct 21, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-225102
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 900160
  • Archival Resource Key: ark:/67531/metadc881678

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 5, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Dec. 1, 2016, 1:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Menard, J E; Bell, M G; Bell, R E; Bialek, J M; Boedo, J A; Bush, C E et al. Recent Physics Results from NSTX, article, October 5, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc881678/: accessed December 10, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.