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Abstract

For self-consistent ion-beam simulations including electron motion, it is desirable
to be able to follow electron dynamics accurately without being constrained by
the electron cyclotron timescale. To this end, we have developed a particle-advance
that interpolates between full particle dynamics and drift motion. By making a
proper choice of interpolation parameter, simulation particles experience physically
correct parallel dynamics, drift motion, and gyroradius when the timestep is large
compared to the cyclotron period, though the effective gyro frequency is artificially
low; in the opposite timestep limit, the method approaches a conventional Boris
particle push. By combining this scheme with a Poisson solver that includes an
interpolated form of the polarization drift in the dielectric response, the movers
utility can be extended to higher-density problems where the plasma frequency of
the species being advanced exceeds its cyclotron frequency. We describe a series of
tests of the mover and its application to simulation of electron clouds in heavy-ion
accelerators.

Key words: particle simulation, ion beams, accelerators, plasmas
PACS: 29.27.-a, 07.05.Tp, 52.65.-y

1 Introduction

For simulations of ion beams in magnetically focussed accelerators which self-
consistently include the effects of electron clouds, it is necessary to follow
electrons through regions in which they are strongly magnetized (cyclotron
frequency ωce large compared to other inverse timescales of interest) as well
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as regions where they are unmagnetized. It is desirable to have a simulation
approach that is not constrained by the electron cyclotron timescale.

There are numerous other examples of systems in which particles transit re-
gions of strong and weak magnetic field, yet the cyclotron motion itself is not
of particular interest. These include field-reversed configurations for magnetic
fusion, reconnecting plasmas with field nulls, and systems with self-generated
strong localized magnetic fields.

To address this issue, we have developed a “blended particle mover” that inter-
polates between full particle dynamics and drift-kinetic dynamics. This mover
was described briefly, and some tests presented, in a previous publication [1].
In this paper we describe the mover in more detail, present additional test
results, and also describe an extension to the original prescription that allows
extension to some higher-density systems with plasma frequency ωp exceeding
the gyrofrequency (along with a test of the new capability).

We note that, in addition to the original motivating applications, which can
be generically described as problems with strongly varying magnetization, the
blended mover concept may provide an attractive alternative to gyrokinetics
for simulating magnetized plasmas.

2 Blended mover

The blended mover concept[1] builds upon the observation by Parker and Bird-
sall[2] that the conventional Boris mover for particles in a magnetic field, when
directly applied with timesteps ∆t large compared to the inverse cyclotron fre-
quency ω−1

c , recovers physically correct electric and magnetic drifts, at least
for test problems where these drifts are uniform, but with two drawbacks: (1)
the particles oscillate about their gyrocenter with an effective “gyroradius”
that is larger than the physical gyroradius by a factor of [1 + (ωc∆t/2)2]1/2,
and (2) the particles oscillate by nearly π in gyrophase each timestep, with a
slow procession period that is O(ωc∆t2). For simulation of phenomena with
frequencies well below the cyclotron frequency, the first difficulty can be over-
come by using an interpolated velocity to advance particle positions. The
instantaneous velocity vL is updated according to

vL,new = vL,old +
[
(∆v)Lorentz + (1− α) (∆v)µ∇B

]
(1)

where the first term on the right hand side is the standard Boris update for
the full velocity, and the second term is a mirror-force correction term which is
discussed and defined below. The particle position is updated using an effective
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velocity which is an interpolation of this updated instantaneous velocity and
the drift velocity vd; specifically, xn+1 = xn + v

n+1/2
eff ∆t, with:

veff = b(b · vL) + αvL,⊥ + (1− α)vd . (2)

and vd is the sum of the particle E × B, ∇B, and curvature drifts. The
logic behind the blended scheme is that adding a fraction α of the oscillat-
ing perpendicular (to B) velocity to the position advance will result in an
oscillation about the field line that is reduced by a factor α. From the expres-
sion above for the effective gyroradius of the Boris mover, it follows that the
choice α = 1/[1 + (ωc∆t/2)2]1/2 produces the physically correct gyroradius.
Furthermore, for any choice of α, since the Boris mover reproduces correct
parallel dynamics and particle drifts, at least for the simple cases considered
by Parker and Birdsall,and, by construction, so does drift kinetics, the inter-
polation given in Eq. (2) will as well. In fact it can be expected to do better
than either pure Boris or drift kinetics for cases where there is significant non-
linear variation of the local particle drift on the scale of the gyroradius, as the
blended scheme will average the drifts over the proper gyroradius.

The magnetic-mirror force µ∇B arises from the local convergence or diver-
gence of field lines. It is properly calculated in a full orbit dynamics calculation,
but needs to be explicitly added to the parallel dynamics in the drift limit.
Hence it appears multiplied by the complement of the interpolation function
in Eq. (1). Since it is a magnetic force it conserves energy, and so can be rep-
resented as a rotation of the velocity vL in the plane defined by vL and the
magnetic field, by an (assumed small) amount ∆θ = (mµ/2B3)1/2∆tB · ∇B
where µ ≡ mv2

⊥/2B.

This algorithm was implemented into the explicit electrostatic code WARP[3],
utilizing a simple predictor-corrector scheme for particle advance only: to ad-
vance from time level n, Eq. (1) is advanced from level n − 1/2 to n + 1/2
using fields at time level n, and, in the evaluation of (∆v)µ∇B, the old particle
velocities. The position is advanced uncentered from time level n to n+1 and
the average of this predicted position and the position at level n is used to
construct effective drift velocities at level n + 1/2.

3 Test problems

The mover described above has been subjected to a number of tests of in-
creasing complexity. First, single-particle electron orbits were calculated in
a quadrupole magnetic field, with a superimposed stationary positive charge
distribution (mocking up the effect of an ion beam). Orbits that pass too close
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Fig. 1. Single-particle orbits in quadrupole field with (a) ωc,max∆t = 5π

and (b) ωc,max∆t = 0.2π. Particles were initialized at azimuthal angles θ =
(i) 40◦, (ii) 50◦, (iii) 43◦, (iv) 47◦, and (v) 70◦. The quadrupole is oriented so
that the principal axes are at θ = 45◦ and 135◦.

to the field null in such a system experience chaotic, nonadiabatic changes in
magnetic moment. A range of initial conditions were chosen to obtain orbits
that were adiabatic, marginally nonadiabatic, and strongly nonadiabatic, and
the axial positions versus time plotted, as shown in Fig. 1. This was done for
a large-timestep simulation (ωc,max∆t = 5π) and a small timestep simulation
which resolves the maximum cyclotron frequency (ωc,max∆t = 0.2π). The steps
in orbits (i), (ii), (iii), (iv) occur as electrons pass close to the field null and
experience a large magnetic curvature drift; their spacing is an indication of
the bounce time. Adiabatic orbit (v), and marginally nonadiabatic orbits (i)
and (ii), agree very well; orbits (iii) and (iv) are chaotic, as evidenced by the
variability in bounce time, and hence agreement is not expected (except that
both small and large timestep simulations exhibit the chaotic behavior, and
a very small change in the initial conditions produces a significantly different
result).
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Fig. 2. Growth rate for two stream instability of finite-size beams. Black curve is
10-gyroadius beam using small timesteps; red is same beam using large timesteps
and blended mover; blue is same beam using large timesteps and pure Boris mover;
gray curve is 20-gyroradius beam using large timesteps and blended mover.

A second test is the calculation of a two-stream instability for two colliding
finite-size (10 gyroradius) anisotropic (T⊥ � T‖) proton beams. We com-
pare results from simulations at small timestep (ωc∆t = 0.6), large timestep
(ωc∆t = 12) using the blended mover, and large timestep using the pure Boris
mover. This test was reported in Ref. [1], though we have since discovered
that the code at the time had an inconsistent boundary condition. Correcting
that produces quantitative but not qualitative changes. In Fig. 2 we show the
time evolution for the corrected simulation, with the results for the blended
mover slightly shifted horizontally to subtract out the difference in the effec-
tive noise seed in the large-timestep. The results clearly illustrate that the
blended mover recovers the correct linear growth and even closely tracks de-
tails of the early evolution of the saturated state. To illustrate the importance
of the finite beam radius, a comparison case with a double-radius beam is also
shown (gray curve).

A third test, also discussed in Ref. [1] is the calculation of electron cloud
dynamics for a self-consistent simulation which includes both an ion beam
and electrons. This is a simulation of an experiment done in the High Cur-
rent Experiment (HCX) facility[4], in which an ion beam which has passed
through is series of quadrupole magnets and a magnetic-field-free end region
is allowed to impact an end plate which emits a copious supply of electrons.
Shown in Fig. 3, taken from Ref. [1], is a plot of the electron distribution
in the final quadrupole magnet and field-free region for the blended mover at
large timestep and a comparison run with small timesteps. The blended mover
does a good job of reproducing the electron distribution calculated with small
timesteps, including capturing the spatial oscillations which appear. These os-
cillations propagate upstream (relative to the ion beam propagation) with the

5



(a)

(b)

(a)

Fig. 3. Electrons in self-consistent electron-ion simulation of 4th magnet of HCX,
using (a) the blended mover and large timesteps, ωc∆t ≈ 2π, and (b) the Boris
mover with small timesteps, ωc∆t ≈ 2π/10

drifting majority electron population, and hence would appear as temporal os-
cillations on a stationary probe. Not shown in Fig. 3 is a simulation done with
the pure Boris mover and the large timestep, which is qualitatively different,
in particular missing most of the oscillation.

A fourth test, to be described in detail elsewhere[5], entails the calculation of
the spatial distribution of positrons in a Penning-Malmberg trap with an added
mirror coil, using the blended mover. The results agree well with predictions
of an analytic model.

Validation tests of the simulation capability, including the blended mover, has
been done by comparing experimental signals from the HCX experiment with
synthetic diagnostics in the WARP code. In particular the electron current
collected on a biased electrode upstream of the last quadrupole magnet has
been measured and also simulated; the results are shown in Fig. 4. It is seen
that the simulation reproduces the magnitude and characteristic frequency
range of the experiment.
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Fig. 4. Comparsion of collected current on electrode in HCX experiment and signal
synthesized from WARP simulation.

4 High-density extension

The blended mover implementation described above is limited to problems
where the species to which it is applied is low density, as characterized by
the plasma frequency being less than the cyclotron frequency. The mover is
of benefit only if it allows timesteps larger than the cyclotron period, but the
existing explicit implementation limits the timestep to be at most of order of
the inverse of the plasma frequency ωp.

We have taken two steps to remove these restrictions: (1) incorporation of
the polarization drift as an additional term in the Poisson equation; this term
becomes an order unity correction when ωp ∼ ωc; and (2) implementation of
a centered predictor-corrector scheme that includes a field solve at the end of
the predictor step. With these changes we can address high-density problems
where geometrical constraints preclude formation of a simple one-dimensional
(along B) plasma wave. The inclusion of polarization in the Poisson equation,
coupled with the modified predictor-corrector scheme, introduces a degree of
implicitness sufficient to allow solution of such problems.

The generalized Poisson equation follows from a determination of the charge
density perturbation produced by the polarization drift[6], and can be written
in the form

∇2φ +
∑
s

∇⊥(ω2
ps/ω

2
cs)∇⊥φ = 4πe(ni − ne) (3)

where ∇⊥ = ∇ − bb · ∇ is the gradient perpendicular to the magnetic field
and ne and ni are the electron and ion densities calculated without inclusion
of the polarization drift, and where the sum s runs over species. The second
term on the left is the polarization response. Since the polarization drift is
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intrinsically included in the direct Boris particle advance and so in the density
calculated from the direct particle advance, for the blended mover the above
equation must be corrected. The density on the right-hand side of a species
pushed with the blended mover will contain a fraction α of the polarization
density, corresponding to the fraction of the Boris move used in the particle
advance for species s. Hence the polarization response for species s should be
multiplied by (1 − αs). Hence the appropriate form of the Poisson equation
becomes:

∇2φ +
∑
s

(1− αs)∇⊥(ω2
ps/ω

2
cs)∇⊥φ = 4πe(ne − ni) (4)

and the sum runs only over species for which the blended mover is used.

The other change is the implementation of a centered predictor-corrector
scheme. To advance from time level n to n + 1, we advance Eq. (1) from
n − 1/2 to n + 1/2) as in Sec. 2, and then advance particle positions from
time level n − 1 to n + 1 using the effective velocity from Eq. (2), with field
quantities evaluated at time level n, and instantaneous velocities vL averaged
over levels n−1/2 and n+1/2. A field solve is then performed for particles at
the predicted positions. A corrector step is then taken from step n to n + 1,
using v

n+1/2
L and the average of the drift velocities at level n and those calcu-

lated from the predicted particle locations and fields. The corrector step can
be repeated multiple times if needed.

As a test problem we consider a simple plasma instability, the slab ion tem-
perature gradient instability in two dimensions [7]. This instability occurs
in a plasma with a uniform magnetic field provided that ηi, the logarithmic
temperature gradient divided by the logarithmic density gradient, exceeds a
critical value. This instability was calculated using gyrokinetics by Lee and
Tang[7]. Lee and Tang developed a multiscale approach[8] to including the
temperature and density gradient drive terms that allowed them to perform
simulations with a uniform plasma in a doubly periodic box; specifically they
add to the particle drifts a fake compressible term

∆v =
(
κn − (3/2− v2/v2

th)κT

)
ex ×B/B (5)

and where κn = −(1/n)dn/dx and κT = −(1/T )dT/dx to the velocities used
to advance the particles. We apply the same approach here, adding it to veff .
We test here application of our mover to ion dynamics, with the electrons
treated by an adiabatic approximation, ne = n̂ exp(eφ/T ), with n̂ a constant
on a field line, which we choose to be n0/〈exp(eφ/T )〉 where n0 is the initial
(constant) density and 〈〉 denotes a field-line average. This is a nonlinear
extension of a linear model commonly used for gyrokinetic simulation, which
preserves the number of electrons on a field line.
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Fig. 5. Growth of the potential for the slab ion-temperature gradient mode, for
the (1,1) Fourier component, obtained with adiabatic electrons and using (a)
the blended mover, and (b) the standard Boris mover with a smaller timestep
(ωci∆t = 0.25)

We have run the specific problem described in Ref. [7]: a two-dimensional
slab x, z, with the magnetic field in the y, z plane and Bz/By = 0.01, with
cell size = gyroradius, κn = 0.05 or 0, κTi = 0.2, ωpi/ωci = (mi/me)

1/2.
We run with the blended mover with ωci∆t = 5.43. Two iterations of the
corrector are required for numerical stability [as determined by running a
problem with the drive term (5) turned off]. To reduce noise we follow the
common practice of smoothing the charge density (with a 1-2-1 filter) prior to
solving Poisson’s equation. The resulting potential solution is Fourier-analyzed
in the two spatial dimensions. The time history of the resultant dominant
nx = nz = 1 mode is plotted in Fig. 5 for κn = 0 The plots show linear growth
followed by saturation at levels comparable to those shown in Ref. [7] and
those found with other gyrokinetic codes [9]. The oscillations in the saturated
phase are comparable in their period to those observed by Lee and Tang. We
infer a linear growth rate from fitting this data (and dividing by two to get the
growth rate for φ itself, of approximately 0.004ωci, which is about 30% more
than the simulation result obtained by Lee and Tang, but still less than the
fluid-based analytic result which Lee and Tang use as a basis for comparison.
We have also analyzed the nx = 1, nz = −1 mode; it has a similar growth
rate and saturation level. We have also run the model with other choices for
n̂, namely n̂ = n0 and n̂ = 〈ni〉/〈exp(eφ/T )〉, and the results are similar.

In the test problems reported in Sec. 3, blended-mover results were compared
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with those using the Boris mover at both small and large timesteps. We show
the comparison with a small-timestep run (ωci∆t = 0.25) in Fig 5b; the result
is sufficiently noisier than the blended mover that it is impossible to obtain a
clean estimate of the linear growth rate, but it and the saturation level can be
seen to be roughly comparable to that for the large-timestep blended mover.
The Boris mover run at the large timestep described above is unstable (large
potentials grow even in the absence of gradients).

5 Discussion

The blended mover described here allows simulation of particles in strongly
inhomogeneous magnetic fields without being constrained by the maximum
cyclotron frequency. it is quite successful in reproducing results from simula-
tions that resolve the cyclotron motion, but with a much larger timestep. It
reproduces single-particle drifts and parallel dynamics quite well, even to the
extent of correctly distinguishing chaotic and non-chaotic orbits near the null
of a quadrupole field (reproducing the trajectory for non-chaotic orbits). It
allows us to recover results for an electron collective oscillation that reproduce
results from both short-timescale simulation and from experimental data. This
mover is now in routine use in the WARP particle code.

The modified implementation of the mover discussed in Sec. 4 was introduced
to allow application to higher-density problems where ωp > ωc. Our tests indi-
cate that it in fact does that. Success depended on inclusion of the polarization
term in the Poisson equation, which operates only on variations perpendicu-
lar to the magnetic field. Removal of this restriction requires a fully implicit
implementation, which we plan to do. Particularly with these high-density
extensions, the mover is a potential alternative to gyrokinetics for simulating
kinetic phenomena in strong magnetic fields while retaining finite gyroradius
effects.
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