R AND D 100 EARLYBIRD AWARD ENTRY

PDF Version Also Available for Download.

Description

The Smart Latch{trademark} is an electronically enhanced door lockset device for industrial and consumer applications, which uses existing neural network technology to analyze the sequence, timing, and acoustic signatures associated with lockset functions and provides immediate indication of failure to correctly lock and latch. It essentially ''listens'' to and learns the sequences and acoustic signatures associated with lockset function and latching. When triggered by specific door activity the Smart Latch{trademark} begins analyzing sequences, frequencies and other parameters. With a satisfactory outcome the device provides positive feedback (e.g. visual and/or audible) and returns to a ''sleep'' state awaiting the next activity. ... continued below

Creation Information

Dugan, J & Debbie Chapman, D January 30, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 55 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Smart Latch{trademark} is an electronically enhanced door lockset device for industrial and consumer applications, which uses existing neural network technology to analyze the sequence, timing, and acoustic signatures associated with lockset functions and provides immediate indication of failure to correctly lock and latch. It essentially ''listens'' to and learns the sequences and acoustic signatures associated with lockset function and latching. When triggered by specific door activity the Smart Latch{trademark} begins analyzing sequences, frequencies and other parameters. With a satisfactory outcome the device provides positive feedback (e.g. visual and/or audible) and returns to a ''sleep'' state awaiting the next activity. If any part of the normal door operation, including latching and length of time, are incorrect various alarm signals can be generated. With electronics and 5+ year battery integrated, the device is simple to install and transparent to the user. Because the device uses proven voice recognition algorithms, it could meet or exceed the performance of the human ear in detecting the unique and complex acoustic signature associated with a properly operating and secured door. Unlike existing technologies, such as limit switches, it is not easily spoofed or defeated and has a high level of immunity to interference. The Smart Latch{trademark} technology can be integrated into existing lockset and door hardware designs, including both low price consumer products and high end electronic/cipher locks. The concept and design are based on a simple security industry adage: ''It isn't locked if it isn't latched''. Even the most elaborate and robust security barriers are of little use if the locking and latching mechanisms are not properly functioning and engaged. Smart Latch{trademark} provides automatic verification of the first and most important step in facility security: Close and properly latch doors and barriers. It is a compelling product for households with children, elderly, or high traffic areas such as an office where a properly closed and latched door is essential for security and safety. In an age of ever increasing security concerns and limited human resources, Smart Latch{trademark} can be a significant addition to the $20 billion plus industrial and consumer lockset market. The Smart Latch{trademark} is unique because: (1) as an inexpensive, battery powered, stand-alone device or as integrated into any standard consumer lock set, the device uses neural network technology to analyze the acoustic signatures associated with normal door operation and generates an alert if a door is not latched correctly and within a set amount of time. (2) It is not easily spoofed or defeated. (3) Installation, setup, and use are simple.

Notes

available

Source

  • R and D Awards

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SRNL-BMD-2007-00002
  • Grant Number: DE-AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 901091
  • Archival Resource Key: ark:/67531/metadc881585

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 30, 2007

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 2, 2016, 5:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 55

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dugan, J & Debbie Chapman, D. R AND D 100 EARLYBIRD AWARD ENTRY, article, January 30, 2007; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc881585/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.