Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation"

PDF Version Also Available for Download.

Description

The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shortening. No differences in cytogenetic damage, cancer induction ... continued below

Physical Description

72Kb

Creation Information

Morgan, William, F., Ph.D., D.Sc. November 22, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shortening. No differences in cytogenetic damage, cancer induction or life span were observed between the hypomorphic mice indicating that genetic imbalance at the NBS1 loci does not modulate low dose radiation sensitivity.

Physical Description

72Kb

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/62859-1
  • Grant Number: FG02-99ER62859
  • DOI: 10.2172/895650 | External Link
  • Office of Scientific & Technical Information Report Number: 895650
  • Archival Resource Key: ark:/67531/metadc881549

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 22, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 3:46 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Morgan, William, F., Ph.D., D.Sc. Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation", report, November 22, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc881549/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.