20-MW Magnicon for ILC

PDF Version Also Available for Download.

Description

The 1.3 GHz RF power to drive ILC is now planned to be supplied by 600-1200, 10-MW peak power multi-beam klystrons. In this project, a conceptual design for 1.3 GHz magnicons with 20 MW peak power was developed as an alternative to the klystrons, with the possibility of cutting in half the numbers of high-power tubes and associated components. Design of a conventional magnicon is described, using TM110 modes in all cavities, as well as design of a modified magnicon with a TE111 mode output cavity. The latter has the advantage of much lower surface fields than the TM110 mode, ... continued below

Physical Description

1.30MB

Creation Information

Hirshfield, Jay L. November 29, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The 1.3 GHz RF power to drive ILC is now planned to be supplied by 600-1200, 10-MW peak power multi-beam klystrons. In this project, a conceptual design for 1.3 GHz magnicons with 20 MW peak power was developed as an alternative to the klystrons, with the possibility of cutting in half the numbers of high-power tubes and associated components. Design of a conventional magnicon is described, using TM110 modes in all cavities, as well as design of a modified magnicon with a TE111 mode output cavity. The latter has the advantage of much lower surface fields than the TM110 mode, with no loss of output power or electronic efficiency.

Physical Description

1.30MB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER84396-p52
  • Grant Number: FG02-05ER84396
  • DOI: 10.2172/895656 | External Link
  • Office of Scientific & Technical Information Report Number: 895656
  • Archival Resource Key: ark:/67531/metadc881500

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 29, 2006

Added to The UNT Digital Library

  • Sept. 22, 2016, 2:13 a.m.

Description Last Updated

  • Nov. 4, 2016, 3:33 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hirshfield, Jay L. 20-MW Magnicon for ILC, report, November 29, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc881500/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.